TRADITIONAL PATHWAY:
In Algebra Readiness courses, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem.
(1) Students use linear equations and systems of linear equations to represent, analyze, and solve a variety of problems. Students recognize equations for proportions (y/x = m or y = mx) as special linear equations (y = mx + b), understanding that the constant of proportionality (m) is the slope, and the graphs are lines through the origin. They understand that the slope (m) of a line is a constant rate of change, so that if the input or x-coordinate changes by an amount A, the output or y-coordinate changes by the amount m . A. Students also use a linear equation to describe the association between twoquantities in bivariate data (such as arm span versus height for students in a classroom). At this grade, fitting the model and assessing its fit to the data are done informally. Interpreting the model in the context of the data requires students to express a relationship between the two quantities in question and to interpret components of the relationship (such as slope and y-intercept) in terms of the situation. Students strategically choose and efficiently implement procedures to solve linear equations in one variable, understanding that when they use the properties of equality and the concept of logical equivalence, they maintain the solutions of the original equation. Students solve systems of two linear equations in two variables and relate the systems to pairs of linesin the plane; these intersect, are parallel, or are the same line. Students use linear equations, systems of linear equations,linear functions, and their understanding of slope of a line to analyze situations and solve problems.
(2) Students grasp the concept of a function as a rule that assigns to each input exactly one output. They understand that functions describe situations where one quantity determines another. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial representations), and they describe how aspects of the function are reflected in the different representations.
(3) Students use ideas about distance and angles, how they behave under translations, rotations, reflections, and dilations, and ideas about congruence and similarity to describe and analyze two-dimensional figures and to solve problems. Students show that the sum of the angles in a triangle is the angle formed by a straight line, and that various configurations of lines give rise to similar triangles because of the angles created when a transversal cuts parallel lines. Students understand the statement of the Pythagorean Theorem and its converse, and can explain why the Pythagorean Theorem holds, for example, by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points on the coordinate plane, to find lengths, and to analyze polygons.
The fundamental purpose of the Algebra I course is to formalize and extend the mathematics that students learned in the middle grades. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, andStatistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. For example, the scope of Algebra I is limited to linear, quadratic, and exponential expressions and functions as well as some work with absolute value, step, and functions that are piecewise-defined. Therefore, although a standard may include references to logarithms or trigonometry, those functions are not to be included in course work for Algebra I; they will be addressed later in Algebra II. For the Algebra I course, instructional time should focus on four critical areas: (1) deepen and extend understanding of linear and exponential relationships; (2) contrast linear and exponential relationships with each other and engage in methods for analyzing, solving, and using quadratic functions; (3) extend the laws of exponents to square and cube roots; and (4) apply linear models to data that exhibit a linear trend.
(1) In previous grades, students learned to solve linear equations in one variable and applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. In Algebra I, students analyze and explain the process of solving an equation and justify the process used in solving a system of equations. Students develop fluency in writing, interpreting, and translating among various forms of linear equations and inequalities and use them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations.
(2) In earlier grades, students define, evaluate, and compare functions and use them to model relationships between quantities. In Algebra I, students learn function notation and develop the concepts of domain and range. They focus on linear, quadratic, and exponential functions, including sequences, and also explore absolute value, step, and piecewise-defined functions; they interpret functions given graphically, numerically, symbolically, and verbally; translate between representations; and understand the limitations of various representations. Students build on and extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. Students explore systems of equations and inequalities, and they find and interpret their solutions. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.
(3) Students extend the laws of exponents to rational exponents involving square and cube roots and apply this new understanding of number; they strengthen their ability to see structure in and create quadratic and exponential expressions. They create and solve equations, inequalities, and systems of equations involving quadratic expressions. Students become facile with algebraic manipulation, including rearranging and collecting terms, and factoring, identifying, and canceling common factors in rational expressions. Students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. Students expand their experience with functions to include more specialized functions—absolute value, step, and those that are piecewise-defined.
The fundamental purpose of the Geometry course is to formalize and extend students’ geometric experiences from the middle grades. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. In this Geometry course, students explore more complex geometric situations and deepen their explanations of geometric relationships, presenting and hearing formal mathematical arguments. Important differences exist between this course and the historical approach taken in geometry classes. For example, transformations are emphasized in this course. For the Geometry course, instructional time should focus on six critical areas: (1) establish criteria for congruence of triangles based on rigid motions; (2) establish criteria for similarity of triangles based on dilations and proportional reasoning; (3) informally develop explanations of circumference, area, and volume formulas; (4) apply the Pythagorean Theorem to the coordinate plane.
(1) Students have prior experience with drawing triangles based on given measurements and performing rigid motions including translations, reflections, and rotations. They have used these to develop notions about what it means for two objects to be congruent. In this course, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems—using a variety of formats including deductive and inductive reasoning and proof by contradiction—and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.
(2) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students derive the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on their work with quadratic equations done in Algebra I.
(3) Students’ experience with three-dimensional objects is extended to include informal explanations of circumference, area, and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.
(4) Building on their work with the Pythagorean Theorem to find distances, students use the rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals, and slopes of parallel and perpendicular lines, which relates back to work done in the Algebra I course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola.
(5) Students prove basic theorems about circles, with particular attention to perpendicularity and inscribed angles, in order to see symmetry in circles and as an application of triangle congruence criteria. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center.
Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions in the Algebra II course. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, and Geometry, . Some standards
are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. Students work closely with the expressions that define the functions, competently manipulate algebraic expressions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers. For the Algebra II course, instructional time should focus on four critical areas: (1) relate arithmetic of rational expressions to arithmetic of rational numbers; (2) expand understandings of functions and graphing to include trigonometric functions; and (3) synthesize and generalize functions and extend understanding of exponential functions to logarithmic functions.
(1) A central theme of this Algebra II course is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. Students explore the structural similarities between the system of polynomials and the system of integers. They draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Connections are made between multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations.
(2) Building on their previous work with functions and on their work with trigonometric ratios and circles in the Geometry course, students now use the coordinate plane to extend trigonometry to model periodic phenomena.
(3) Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context.
INTEGRATED PATHWAY:
The fundamental purpose of the integrated pathway Support courses is to formalize and extend the mathematics that students learned in the middle grades. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, and Geometry. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. For example, the scope of these courses are limited to linear and exponential expressions and functions as well as some work with absolute value, step, and functions that are piecewise-defined. For these courses, instructional time should focus on six critical areas: (1) extend understanding of numerical manipulation to algebraic manipulation; (2) synthesize understanding of function; (3) deepen and extend understanding of linear relationships; (4) apply linear models to data that exhibit a linear trend; (5) establish criteria for congruence based on rigid motions; and (6) apply the Pythagorean Theorem to the coordinate plane.
(1) In previous grades, students had a variety of experiences working with expressions and creating equations. Students become competent in algebraic manipulation in much the same way that they are with numerical manipulation. Algebraic facility includes rearranging and collecting terms, factoring, identifying and canceling common factors in rational expressions, and applying properties of exponents. Students continue this work by using quantities to model and analyze situations, to interpret expressions, and to create equations to describe situations.
(2) In earlier grades, students define, evaluate, and compare functions, and use them to model relationships among quantities. Students will learn function notation and develop the concepts of domain and range. They move beyond viewing functions as processes that take inputs and yield outputs and start viewing functions as objects in their own right. They explore many examples of functions, including sequences; interpret functions given graphically, numerically, symbolically, and verbally; translate between representations; and understand the limitations of various representations. They work with functions given by graphs and tables, keeping in mind that, depending upon the context, these representations are likely to be approximate and incomplete. Their work includes functions that can be described or approximated by formulas as well as those that cannot. When functions describe relationships between quantities arising from a context, students reason with the units in which those quantities are measured. Students build on and informally extend their understanding of integer exponents to consider exponential functions. They compare and contrast linear and exponential functions, distinguishing between additive and multiplicative change. They interpret arithmetic sequences as linear functions and geometric sequences as exponential functions.
(3) In previous grades, students learned to solve linear equations in one variable and applied graphical and algebraic methods to analyze and solve systems of linear equations in two variables. Building on these earlier experiences, students analyze and explain the process of solving an equation and justify the process used in solving a system of equations. Students develop fluency in writing, interpreting, and translating among various forms of linear equations and inequalities and use them to solve problems. They master the solution of linear equations and apply related solution techniques and the laws of exponents to the creation and solution of simple exponential equations. Students explore systems of equations and inequalities, and they find and interpret their solutions. All of this work is grounded on understanding quantities and on relationships among them.
Read more at
or at this website
or call ISP.