> <>; (bjbj .(bb(48,p++@ LxV00++\:
Saddleback/ Chemistry Name ____________________________________
Date _________ Period _____
1 ( Matter and Measurements
SIGNIFICANT FIGURES
A. When taking measurements all certain digits plus the first uncertain number are significant.
Example: Your bathroom scale weighs in 10 Newton increments and when you step onto it, the pointer stops between 550 and 560. Your look at the scale and determine your weight to 557 N. You are certain of the first two places, 55, but not the last place 7. The last place is a guess and if it is your best guess it also is significant.
B. When given measurements, the numbers that are significant are the digits 1-9 and the 0 when it is not merely a place holder.
1. When 0s are between sig. fig., 0s are always significant.
Example: 101 has 3 sig. fig. and 34055 has 5 sig. fig.
2. When the measurement is a whole number ending with 0s, the 0s are never significant.
Example: 210 has 2 sig. fig. and 71,000,000 also has 2 sig. fig.
3. When the measurement is less than a whole number, the 0s between the decimal and other significant numbers are never significant (they are place holders).
Example: .0021 has 2 sig. fig. and .0000332 has 3 sig. fig.
4. When the measurement is less than a whole number and the 0s fall after the other significant numbers, the 0s are always significant.
Example: .310 has 3 sig. fig. and .3400 has 4 sig. fig.
5. When the measurement is less than a whole and there is a 0 to the left of the decimal, the 0 is not significant.
Example: 0.02 has only 1 sig. fig. and 0.110 has 3 sig. fig.
6. When the measurement is a whole number but ends with 0s to the right of the decimal, the 0s are significant.
Example: 20.0 has 3 sig. fig., 18876.000 has 8 sig. fig.
In case 4 and 6 the 0s have no effect on the value (size) of the measurement. Therefore, these 0s must have been included for another reason and that reason is to show precision of the measurement. Since these 0s show precision they must therefore be significant.
In cases 2 and 3 removal of the 0s DO change the value (size) of the measurement, the 0s are place holders and are thus not significant.
In case 5 the 0 is completely unnecessary, it is neither a place holder nor adds to the accuracy of the measurement.
UNCERTAINTIES IN CALCULATIONS
1. When adding or subtracting numbers written with the ( notation, always add the ( uncertainties and then round off the ( value to the largest significant digit. Round off the answer to match.
Example: (22.4 ( .5) + (14.76 ( .25) = 37.16 (.75 = 37.2 ( .8
The uncertainty begins in the tenths place it is the last significant digit.
2. When adding or subtracting numbers written in significant figures, show the uncertainty by rounding the answer to match the largest place with uncertainty.
Example: 267 + 11.8 = 278.8 = 279
The least accurate original measurement is only accurate to the ones place.
4. When multiplying or dividing measurements written in significant figures, show the uncertainty of your calculations by rounding off your answer to match the same number of significant figures as your least precise measurement (the measurement with the least number of significant figures).
Example: 477.85 ( 32.6 = 14.657975 = 14.7
32.6 is the least accurate measurement with only 3 significant figures.
NOTE: There are two types of precision: absolute precision and relative precision.
Example: 322.45 x 12.75 x 3.92 = 16116.051 = 16100
All the measurements are accurate to the hundredth place (absolute precision) but the answer is rounded to 3 significant figures because 3.92 has only 3 significant figures (relative precision).
In Summary:
Adding and Subtracting
Multiplying and dividing
#s with ( notation
Rule 1
Dont Do This Case
#s with significant figures
Rule 2
Rule 4
bc{|-2R
Y
]
`
v
z
-0u|$%^_jyzκө jhz{5\ jhz{hz{@PCJOJQJhz{5>*\ hz{>*hz{5\hz{5@PCJOJQJ\hg jhz{hz{h$h$GDB@`|F
G
CDO
Q
^ h^h`$
ha$
h
ABC$%+z{|}B$a$^
$%&'JPz|'+,238;@A*_d( jhz{5\ jhz{hz{56>*\]h$ jhz{hz{5>*\hz{5\hz{ jhz{>* hz{>*D./$$If^`a$$$If^`a$|kkZZZZ$$If^`a$$$If^`a$kd$$IflFx~)|
0(64
lah&|kkZZZZ$$If^`a$$$If^`a$kd$$IflFx~)|
0(64
lah&'(|zkdT$$IflFx~)|
0(64
lah,1h/ =!"#$%$$Ifh!vh#v|
#v
:Vl0(65|
5
///4ah$$Ifh!vh#v|
#v
:Vl0(65|
5
/4ah$$Ifh!vh#v|
#v
:Vl0(65|
5
4ah666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH D`DNormalCJKH _HaJ mH sH tH @@@ Heading 1$$@&a$5\\@\ Heading 2$$
h&d@&PCJ$OJQJDA DDefault Paragraph FontVi@VTable Normal :V44
la(k (No List2>@2Title$a$5\LC@LBody Text Indenth^h`PK!pO[Content_Types].xmlj0Eжr(]yl#!MB;.n̨̽\A1&ҫ
QWKvUbOX#&1`RT9<l#$>r `С-;c=1g~'}xPiB$IO1Êk9IcLHY<;*v7'aE\h>=^,*8q;^*4?Wq{nԉogAߤ>8f2*<")QHxK
|]Zz)ӁMSm@\&>!7;wP3[EBU`1OC5(F\;ܭqpߡ 69&MDO,ooVM M_ո۹U>7eo >ѨN6}
bvzۜ6?ߜŷiLvm]2SFnHD]rISXO]0 ldC^3شd$s#2.h565!v.chNt9W
dumԙgLStf+]C9P^%AW̯f$Ҽa1Q{B{mqDl
u" f9%k@f?g$p0%ovkrt ֖ ? &6jج="MN=^gUn.SƙjмCR=qb4Y" )yvckcj+#;wb>VD
Xa?p
S4[NS28;Y[,T1|n;+/ʕj\\,E:!
t4.T̡e1
}; [z^pl@ok0e
g@GGHPXNT,مde|*YdT\Y䀰+(T7$ow2缂#G֛ʥ?qNK-/M,WgxFV/FQⷶO&ecx\QLW@H!+{[|{!KAi
`cm2iU|Y+ި [[vxrNE3pmR
=Y04,!&0+WC܃@oOS2'Sٮ05$ɤ]pm3FtGɄ-!y"ӉV
.
`עv,O.%вKasSƭvMz`3{9+e@eՔLy7W_XtlPK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-!pO[Content_Types].xmlPK-!֧6-_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!!Z!theme/theme/theme1.xmlPK-!
ѐ'(
theme/theme/_rels/themeManager.xml.relsPK]#
(
((
&(
8@0(
$}~
B
S ?*?),loqt'*bo
NQ*:::::::::::::::::g$GDV^z{r$(*@Az(h@UnknownG*Ax Times New Roman5Symbol3*Cx Arial?
Arial BlackA$BCambria Math"h=:g=:gCC!24!!3QHP?r2!xx,SIGNIFICANT FIGURESmynameNiloufar Mirhashemi
Oh+'0 $
HT
`lt|'SIGNIFICANT FIGURESmynameNormal.dotmNiloufar Mirhashemi2Microsoft Macintosh Word@@x@xC
՜.+,0hp
'mycompany!SIGNIFICANT FIGURESTitle
!"#$%&'()*,-./012456789:=Root Entry FMx?Data
1TableWordDocument.(SummaryInformation(+DocumentSummaryInformation83CompObj` F Microsoft Word 97-2004 DocumentNB6WWord.Document.8