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Preface 
 
The study of statistics has become commonplace in a variety of disciplines and the practice of statistics is 
no longer limited to specially trained statisticians.  The work of agriculturists, biologists, economists, 
psychologists, sociologists, and many others now quite often relies on the proper use of statistical 
methods.  However, it is probably safe to say that most practitioners have neither the time nor the 
inclination to perform the long, tedious calculations that are often necessary in statistical inference.  
Fortunately there are now software packages and calculators that can perform many of these calculations 
in an instant, thus freeing the user to spend valuable time on methods and conclusions rather than on 
computation. 
       With its built-in statistical features, the TI-83 Plus Graphing Calculator has revolutionized the 
teaching of statistics.  Students and teachers now have instant access to many statistical procedures.  
Advanced techniques can be programmed into the TI-83 Plus which then make it as powerful as, but 
much more convenient than, common statistical software packages.   
       This manual serves as a companion to Introduction to the Practice of Statistics (5th Edition) by 
David S. Moore and George P. McCabe.  Problems from each section of the text are worked using either 
the built-in TI-83 Plus functions or programs specially written for this calculator.  The tremendous 
capabilities and usefulness of the TI-83 Plus are demonstrated throughout.  It is hoped that students, 
teachers, and practitioners of statistics will continue to make use of these capabilities, and that readers 
will find this manual to be helpful. 
 

Programs 
 
All codes and instructions for the programs are provided in the manual; however, they can be downloaded 
directly from http://www.wku.edu/~david.neal/ips5e/ 
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Looking at Data—  
Distributions 

 
1.1
1.2
1.3

Displaying Distributions with Graphs 
Describing Distributions with Numbers 
Density Curves and Normal Distributions 

 
 
 
Introduction 
 
In this chapter, we use the TI-83 Plus to view data sets.  We first show how to make bar graphs, 
histograms, and time plots.  Then we use the calculator to compute basic statistics, such as the mean, 
median, and standard deviation, and show how to view data further with boxplots.  Lastly, we use the TI-
83 Plus for calculations involving normal distributions. 
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1.1   Displaying Distributions with Graphs 
 
We start by using the TI-83 Plus to graph data sets.  In this section, we will use the STAT EDIT screen to 
enter data into lists and use the STAT PLOT menu to create bar charts, histograms, and time plots. 
       Throughout the manual, we will be working with data that is entered into lists L1 through L6 on the 
TI-83 Plus.  These lists can be found in the STAT EDIT screen.  A list should be cleared before entering 
new data into it. 
 

   
Press STAT, then 1 

to bring up the list editor. 
Use cursor to highlight a list, 

press CLEAR, then press 
ENTER to clear the list. 

Enter new data  
into a cleared list. 

 
 

Bar Graph of Categorical Data 
 
Exercise 1.14  Here are the percents of women among students seeking various graduate and professional 
degrees during the 1999–2000 academic year. 
 

Degree Percent female 
MBA 39.8 
MAE 76.2 

Other MA 59.6 
Other MS 53.0 

Ed.D. 70.8 
Other Ph.D. 54.2 

MD 44.0 
Law 50.2 

Theology 20.2 
 
Make a bar graph of the data.  Make another bar graph with the bars ordered by height. 
 
Solution.  First, label the nine categories as 1–9 and enter these values into list L1, then enter the percents 
into list L2.  Next, adjust the WINDOW and STAT PLOT settings and graph.  Here we use X from 1 to 
10 on a scale of 1 in order to see all nine bars, and use Y from 0 to 100 to represent the range 0% to 
100%. 
 

    
Enter 1–9 into list  
L1 and enter the 

percents into list L2. 

Adjust WINDOW 
with X from 1 to 10 
and Y from 0 to 100. 

Press STAT PLOT, 
then 1.  Set to the third 

type to plot L1  
with frequencies L2. 

Press GRAPH,  
then TRACE. 
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       Next, we make a Pareto chart with the bars ordered by height.  To do so, we simply use the SortD( 
command from the STAT EDIT screen to sort the data in list L2 into descending order, then re-graph. 
 

                
 
     

Making a Histogram 
 
Exercise 1.34  Make a histogram of Cavendish’s measurements of the density of the earth. 
 

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65 
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39 
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85  

 
Solution.  First, we enter the data into a list.  Here we will use list L3.  We will graph using an X range of 
4.8 to 6 on a scale of 0.1 in the WINDOW settings.  As with a bar graph, we use the third type in the 
STAT PLOT settings for a histogram.  Next, we set the Xlist to L3 with frequencies of 1, and press 
GRAPH.   
 

    
Enter data. Adjust WINDOW. Adjust STAT PLOT. Graph and trace. 

 
        
 

Time plot 
 

The next exercise demonstrates how to use a time plot to view data observations that are made over a 
period of time. 
 
Exercise 1.28  Here are data on the recruitment (in millions) of new fish to the rock sole population in the 
Bering Sea between 1973 and 2000.  Make a time plot of the recruitment. 
 

Year  Recruitment Year Recruitment Year Recruitment Year Recruitment 
1973  173 1980 1411 1987 4700 1994 505 
1974 234 1981 1431 1988 1702 1995 304 
1975 616 1982 1250 1989 1119 1996 425 
1976 344 1983 2246 1990 2407 1997 214 
1977 515 1984 1793 1991 1049 1998 385 
1978 576 1985 1793 1992 505 1999 445 
1979 727 1986 2809 1993 998 2000 676 
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Solution.  Enter the data into lists and adjust the WINDOW so that X ranges through the years and Y 
ranges through the recruitment values.  Adjust the STAT PLOT settings to the second type and set the 
lists to those that contain the data, then graph. 
 

    
Enter data. Adjust WINDOW. Adjust STAT PLOT 

setting to second type. 
Graph and trace. 

 
Note:  We also can use the seq( command from the LIST OPS menu to enter the years into a list.  On the 
Home screen, simply enter the command seq(K,K,1973,2000)→L1.  
     
 
1.2   Describing Distributions with Numbers 
 
In this section, we will use the 1–Var Stats command from the STAT CALC 
menu to compute the various statistics of a data set including the mean, standard 
deviation, and five-number summary.  We also will use boxplots and modified 
boxplots to view these statistics.  

 
 

1–Var Stats 
 
Exercise 1.74  Find x  and s for Cavendish’s data from Exercise 1.34.  Also give the five-number 
summary and create a boxplot to view the spread. 
 

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65 
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39 
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85  

 
 
Solution.  After the data has been entered into a list, say list L1, we compute the statistics by entering the 
command 1–Var Stats L1.  The values of x  and s are then displayed.  Scroll down to see the five-
number summary. 
 

    
Enter data. Compute  

1-Var Stats. 
View x  and s. Scroll down to view 

five-number summary. 
 
       Two standard deviation values are given.  The first, Sx, is the standard deviation that is denoted by s  
in the text.  Thus, we obtain x ≈ 5.448 and s ≈  0.221 with a five-number summary of 4.88 – 5.295 – 5.46 
– 5.615 – 5.85. 
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Boxplot 
 
To make a boxplot of data in a list, first adjust the WINDOW settings so that Xmin to Xmax includes the 
entire range of the measurements.  (The boxplot ignores the Y range).  Next, adjust the STAT PLOT 
settings to the fifth type for a boxplot, denote the list that contains the data, and press ENTER.  Press 
TRACE and scroll to see the values of the five-number summary. 
 

    
Adjust WINDOW. Adjust STAT PLOT 

setting to fifth type. 
Graph. Trace to see the five-

number summary. 
       
Exercise 1.52  The data from Exercise 1.35 is given below.  The values give the nightly study time 
claimed by samples of first-year college men and women.  (a)  Compute x  and s for these data sets.  (b)  
For each data set, find the suspected outliers as determined by the 1.5 × IQR rule.  (c)  Make side-by-side 
modified boxplots of the two data sets. 

 
Women Men 

180 120 180 360 240   90 120   30   90 200 
120 180 120 240 170   90   45   30 120   75 
150 120 180 180 150 150 120   60 240 300 
200 150 180 150 180 240   60 120   60   30 
120   60 120 180 180   30 230 120   95 150 
  90 240 180 115 120     0 200 120 120 180 

 
Solution.  We enter the data sets into separate lists and then use the 1–Var Stats command on each list.  
We then adjust the window settings so that the X range includes the span of both sets. 
 

    
Enter data. Compute statistics 

of first list. 
Women’s statistics Five-number summary

 

    
Compute statistics 

of second list. 
Men’s statistics Five-number summary Adjust WINDOW. 

 
Note:  If we have two data sets with an equal number of measurements, then we can compute the statistics 
of both simultaneously with the 2–Var Stats command from the STAT CALC menu.  In this case, enter 
2–Var Stats L1,L2.  However, this command does not display the five-number summaries. 
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       From the five-number summaries, we can compute boundaries according to the 1.5 × IQR  rule.  In 
each case, we need the values 1 3 1Q 1.5 (Q Q )− × −  and 3 3 1Q +1.5×(Q -Q ) 3 3 1Q +1.5×(Q -Q ) .  For the 
women’s study times, these values are 
 

120 1.5 (180 120) 30− × − =     and    180 1.5 (180 120) 270+ × − =  
 
For the men’s study times, these values are 
 

60 1.5 (150 60) 75− × − = −    and    150 1.5 (150 60) 285+ × − =  
 
       Now we can determine the suspected outliers.  For the women, these outliers are any times below 30 
minutes or above 270 minutes, while for the men they are any times below -75 minutes or above 285 
minutes.  To see these values more quickly, we can use the SortA( command from the STAT EDIT 
menu to sort each list into increasing order.  Enter SortA(L1 then SortA(L2.  Because these lists have the 
same size, we can also enter the command SortA(L1,L2.  In each case, there are no low outliers, but the 
time 360 is a high outlier for the women and the time 300 is a high outlier for the men. 
 

   
Sort the lists. Find low outliers. Find high outliers. 

 
 
       Next, we will make side-by-side boxplots of both data sets followed by modified side-by-side 
boxplots that denote the single outlier for each. 
 

   
Adjust Plot1 settings to 
the fifth type for list L1. 

Adjust Plot2 settings to 
the fifth type for list L2. 

Graph to see 
side-by-side boxplots. 

 
 

   
Adjust Plot1 settings to 

the fourth type for list L1. 
Adjust Plot2 settings to 

the fourth type for list L2. 
Graph to see modified  
side-by-side boxplots. 
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1.3   Density Curves and Normal Distributions 
 
The TI-83 Plus has several commands in the DISTR 
menu that can be used for graphing normal 
distributions, computing normal probabilities, and 
making inverse normal calculations. In this section, we 
demonstrate these various functions.    

 
Plotting and Shading a Normal Distribution 

 
Example 1.23  The distribution of heights of young women are approximately normal with mean µ = 
64.5 inches and standard deviation σ = 2.5 inches. (a) Plot a density curve for this N ( 64. 5 , 2 . 5 )  
distribution.  (b) Shade the region and compute the probability of heights that are within one standard 
deviation of average. 
 
Solution.  (a)  We must enter the normal density function normalpdf(X, µ, σ) and adjust the window 
settings before graphing. 
 

    
Bring up the Y= screen.  Go 
to the DISTR screen and 
enter 1 for the normalpdf( 
function. Type the line 
normalpdf(X,64.5,2.5) in Y1. 

In the WINDOW screen, set 
Xmin to 64.5 – 3×2.5 and Xmax 
to 64.5 + 3×2.5.  Set Ymin to 0 
and set Ymax to the value 
1/ √(2π )/2.5. 

  Press GRAPH. 

 
(b)  Return to the Home screen and bring up the 
command ShadeNorm( from the DISTR DRAW 
menu.  Then Type and enter the command 
ShadeNorm(64.5 – 2.5, 64.5 + 2.5, 64.5, 2.5), or in 
general, ShadeNorm(lower, upper, µ, σ).    

  
Exercise 1.93   Let Z ~ N(0, 1)  be the standard normal distribution.  Shade the areas and find the 
proportions for the regions (a) Z > 1.67,  (b)  –2 < Z < 1.67. 
 
Solution.  (a)  For the standard normal density function, we set the WINDOW with X ranging from –3 to 
3 and Y ranging from 0 to 1/ (2 )π .  Here we use 1E99 as an estimate for the upper bound of +∞  in the 
ShadeNorm( command. 
 

   
Adjust WINDOW.  Enter the command 

ShadeNorm(1.67,1E99,0,1). 
( 1.67) 0.04746P Z > ≈  



 
8          CHAPTER  1 
 
(b)  Before drawing a new graph, enter the command ClrDraw from the CATALOG in order to clear the 
shading from the previous graph.  We find that ( 2 1.67) 0.92979P Z− < < ≈ . 

          

                
 
 
 

The Normal Distribution and Inverse Normal Commands 
 
For a ( , )N µ σ  distribution X, we can also find probabilities with the built-in normalcdf( command from 
the DISTR menu.  The command is used as follows: 
 

 
P ( a ≤ X ≤ b )  

 
P ( X < k )  = P ( X ≤ k ) 

 

 
P ( X > k )  = P ( X 3 k ) 

 

 
normalcdf ( , , , )a b µ σ  

 
normalcdf(–1E 99, , ,k µ σ ) 

 
normalcdf(k, 1E 99, µ,σ) 

 
 
       To find the value x  for which ( )P X x≤  equals a desired proportion p (an inverse normal 
calculation), we use the command invNorm( , ,p µ σ ). The following exercises demonstrate these 
commands. 
  
 
Exercise 1.115  The lengths of human pregnancies are approximately normally distributed with a mean of 
266 days and a standard deviation of 16 days.  (a) What percent of pregnancies last fewer than 240 days?  
(b) What percent of pregnancies last between 240 and 270 days?  (c) How long do the longest 20% of 
pregnancies last? 
 
Solution.  For parts (a) and (b), we simply use the normalcdf( command for (266,16)X N∼  by 
entering normalcdf(–1E 99, 240, 266, 16) and normalcdf(240, 270, 266, 16).  For part (c), we must find 
x such that ( )P X x≥  = 0.20, which is equivalent to ( )P X x≤  = 0.80.  Thus, we enter the command 
invNorm(.80, 266, 16). 
 

   
( 240) 5.2%P X < ≈  (240 270) 54.66%P X< < ≈  279.466 daysx ≈  
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Exercise 1.97  The Weschler Adult Intelligence Scale (WAIS) provides IQ scores that are normally 
distributed with a mean of 100 and a standard deviation of 15.  (a)  What percent of adults would score 
130 or higher?  (b)  What scores contain the middle 80% of all scores? 
 
Solution.  (a)  We let (100,15)X N∼  and enter normalcdf(130, 1E 99, 100, 15).  (b)  If 80% of scores 
are between x and y, then 10% of scores are below x and 10% of scores are above y.  So x is the inverse 
normal of 0.10 and y is the inverse normal of 0.90. 
 

  
( 130) 2.275%P X ≥ ≈ ( 130) 2.275%P X ≥ ≈  80 . 777 < X < 119 . 223  

Contains 80% of the scores. 
 
 
 

Normal Quantile Plot 
 
Exercise 1.123  Make a normal quantile plot of Cavendish’s data from Exercise 1.34. 
 

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65 
5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39 
5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85  

 
 
Solution.  To see a normal quantile plot, we adjust the WINDOW so that X represents the data and so 
that Y ranges from –3 to 3, which covers most of the standard normal curve. In the STAT PLOT screen, 
the sixth type is the normal quantile plot.  For Cavendish’s data, we observe that the plot is nearly a 
straight line, with only a couple of outliers. 
 

   
Enter data into a list. Sort the data. Observe max and min. 

 

 

 

 

 

 
Adjust the WINDOW. Adjust STAT PLOT settings. Graph. 
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Exercise 1.126  Generate 100 observations from the standard normal distribution.  Make a histogram of 
these observations.  Make a normal quantile plot of the data. 
 
 
Solution.  We can generate a random list from a normal distribution with the 
randNorm( command from the MATH PRB menu.  In general, to store n 
random values from a ( , )N µ σ  distribution into list L1, enter the command 
randNorm( , ,nµ σ )→L1.  Then adjust the WINDOW and STAT PLOT 
settings and graph to see a histogram.  

 

    
Generate list. Adjust WINDOW. Adjust STAT PLOT. Graph. 

 

   
Re-adjust Y range 

in the WINDOW settings. 
Set STAT PLOT to sixth type 

for a normal quantile plot. 
Graph. 

 
 
Note:  We can also generate data for measurements that are uniformly distributed from 0 to b.  In this 
case, we use the rand command from the MATH PRB menu, and enter b*rand(n )→L1 to store n of 
these values into list L1.  (See Exercise 1.127 in the text.) 



 
 
 

CHAPTER 

2 

   
 
 

 
 
 

Looking at Data—  
Relationships 

 
2.1
2.2
2.3
2.4

Scatterplots 
Correlation 
Least-Squares Regression 
Cautions about Correlation 
and Regression  

 
 
Introduction 
 
In this chapter, we use the TI-83 Plus to graph the relationship between two quantitative variables using a 
scatterplot.  We then show how to compute the correlation and find the least-squares regression line 
through the data.  Lastly, we show how to work with the residuals of the regression line.   
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2.1   Scatterplots 
 
We begin by showing how to make a scatterplot of two quantitative variables along the x and y axes so 
that we may observe if there is any noticeable relationship.  In particular, we look for the strength of the 
linear relationship. 
 
Exercise 2.9   Make a scatterplot of brain activity level against social distress score. 
 

 
Subject 

Social 
distress 

Brain 
activity 

 
Subject 

Social 
distress 

Brain 
activity 

1 1.26 –0.055 8 2.18 0.025 
2 1.85 –0.040 9 2.58 0.027 
3 1.10 –0.026 10 2.75 0.033 
4 2.50 –0.017 11 2.75 0.064 
5 2.17 –0.017 12 3.33 0.077 
6 2.67   0.017 13 3.65 0.124 
7 2.01   0.021    

 
 
Solution.  We first enter the data into the STAT EDIT screen.  Here we use L1 for the social distress 
scores, plotted on the x axis, and use L2 for the brain activity levels that will be plotted on the y axis.  We 
adjust the WINDOW as below so that the ranges include all measurements, and adjust the STAT PLOT 
settings by highlighting and entering the first Type and setting the appropriate lists.  Press GRAPH and 
then press TRACE if so desired.   
 

    
Enter data into lists. Adjust WINDOW. Adjust STAT PLOT. Graph. 

 
       We see that as the social distress score increases, then the brain activity level generally tends to 
increase also. 
 
Exercise 2.13   Make a scatterplot of metabolic rate versus body mass for the females.  Make another 
scatterplot with a different symbol for the males, and then combine the two plots. 
 

Sex Mass Rate Sex Mass Rate 
M 62.0 1792 F 40.3 1189 
M 62.9 1666 F 33.1   913 
F 36.1   995 M 51.9 1460 
F 54.6 1425 F 42.4 1124 
F 48.5 1396 F 34.5 1052 
F 42.0 1418 F 51.1 1347 
M 47.4 1362 F 41.2 1204 
F 50.6 1502 M 51.9 1867 
F 42.0 1256 M 46.9 1439 
M 48.7 1614    
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Solution.  We first enter the mass and rate of just the females into lists L3 and L4 respectively.  Then we 
enter the mass and rate of the males into lists L5 and L6.  However, we adjust the WINDOW so that the 
X range includes all the masses and the Y range includes all the rates.  We adjust the STAT PLOT 
settings in Plot1 to obtain the scatterplot of L3 versus L4, and adjust the STAT PLOT settings in Plot2 
to obtain the scatterplot of L5 versus L6. 

    
Enter data into lists. Adjust WINDOW. Adjust Plot1 

for the female lists. 
Scatterplot  
of females 

 

   
Turn off Plot1, turn on 
Plot2 with a different 

mark for the male lists. 

Scatterplot  
of males 

Turn on both  
Plot1 and Plot2  

and regraph. 
 
Exercise 2.19  Make a plot of the total return against market sector.  Compute the mean return for each 
sector, add the means to the plot, and connect the means with line segments. 
 

Market sector Fund returns (percent) 
Consumer 23.9 14.1 41.8 43.9 31.1   
Financial services 32.3 36.5 30.6 36.9 27.5   
Technology 26.1 62.7 68.1 71.9 57.0 35.0 59.4 
Natural resources 22.9 7.6 32.1 28.7 29.5 19.1  

 
Solution.  We will plot the market sectors on the x axis as the values 1, 2, 3, and 4.  Because there are 
multiple returns for each sector, we enter each of the values 1 through 4 as many times into list L1 as 
there are returns for that sector.  We enter the corresponding returns into list L2. 
 

    
Enter data. Adjust WINDOW. Adjust STAT PLOT. Graph. 

 

   
Enter 1–4 into list L3 
and means into L4. 

Turn on Plot2 to the second 
type for lists L3 and L4. 

Graph. 
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2.2   Correlation 
 
In this section, we use the TI-83 Plus to compute the correlation coefficient r between paired data of 
quantitative variables. 

 
       First, we must make sure that the calculator’s 
diagnostics are turned on.  Enter the CATALOG (2nd 
0) and scroll down to the DiagnosticOn command.  
Press ENTER to bring the command to the Home 
screen, then press ENTER again.    

 
Exercise 2.29  The table below gives the heights in inches for a sample of women and the last men whom 
they dated.  (a)  Make a scatterplot.  (b)  Compute the correlation coefficient r between the heights of 
these men and women.  (c)  How would r change if all the men were 6 inches shorter than the heights 
given in the table? 
 

Women ( x ) 66 64 66 65 70 65 
Men ( y ) 72 68 70 68 71 65 

 
Solution.  (a)  We enter the heights of the women into list L1 and the heights of the men into list L2, 
adjust the WINDOW and STAT PLOT settings, and graph. 
 

    
Enter data. Adjust WINDOW. Adjust STAT PLOT. Graph. 

 
(b)  To compute the correlation, we use the LinReg(a+bx) command (item 8) from the STAT CALC 
menu.  Enter the command LinReg(a+bx) L1,L2.  The LinReg(ax+b) command (item 4) will also 
compute the correlation. 
  

   
STAT CALC item 8 Compute correlation. r  = 0.5653337711 

 
(c)  We enter heights for all the males that are 6 inches shorter into list L3.  Then we use the command 
LinReg(a+bx) L1,L3 to see that r  has not changed. 
 

    
Enter new heights. View new heights. Compute correlation. r  = 0.5653337711 



 
Looking at Data—Relationships          15 

 
2.3   Least-Squares Regression 
 
In this section, we will compute the least-squares line of two quantitative variables and graph it through 
the scatterplot of the variables.  We will also use the line to predict the y-value that should occur for a 
given x-value. 
 
 
Exercise 2.47   The data from Exercise 2.9 are given below.  (a)  What is the equation of the least-squares 
regression line for predicting brain activity from social distress score?  Make a scatterplot with this line 
drawn on it.  (b)  Use the equation of the regression line to get the predicted brain activity level for a 
distress score of 2.  (c)  What percent of the variation in brain activity among these subjects is explained 
by the straight-line relationship with social distress score? 
 

 
Subject 

Social 
distress 

Brain 
activity 

 
Subject 

Social 
distress 

Brain 
activity 

1 1.26 –0.055 8 2.18 0.025 
2 1.85 –0.040 9 2.58 0.027 
3 1.10 –0.026 10 2.75 0.033 
4 2.50 –0.017 11 2.75 0.064 
5 2.17 –0.017 12 3.33 0.077 
6 2.67   0.017 13 3.65 0.124 
7 2.01   0.021    

 
 
Solution.  (a)  We obtain the linear regression line using the same LinReg(a+bx) command that computes 
the correlation.  After entering data into lists, say L1 and L2, enter the command LinReg(a+bx) L1,L2. 
 

    
Enter data into lists. STAT CALC item 8 Compute the 

regression line. 
y a bx= +  

0.126 0.06078x≈ − +  

 
       To graph the regression line, we must enter it into the Y= screen.  We can type it in directly, or we 
can access this regression function from the VARS Statistics EQ menu.  After entering the equation of 
the line into Y1, adjust the WINDOW and STAT PLOT settings and graph. 
 

    
Go to Y=, press VARS, 
then 5, scroll  right to 
EQ,  press 1 to enter 

the line. 

Adjust WINDOW. Adjust STAT PLOT. Graph. 
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(b)  Once the equation of the regression line is entered into the Y= screen, we can use the CALC screen 
to evaluate the line for a specific x value. 
 

   
Bring up item 1 in the  

CALC screen (2nd TRACE). 
Type the distress score 

of X = 2 and press ENTER. 
The predicted brain activity 

level is Y = –0.00452. 
 
       Alternately, we can access the Y1 function from the Home screen.  To do 
so, press VARS, arrow right to Y–VARS, enter 1 for Function, enter 1 for Y1, 
then enter  the command Y1(2). 

 
        
       We can also verify that the point ( ,x y ) is on the regression line; but first we must compute the 
statistics.  We can do so simultaneously with the 2–Var Stats command from the STAT CALC menu 
because the two data sets have the same size.  Enter the command 2–Var Stats L1,L2.  Then enter 
Y1( x ) by recalling x  from the VARS Statistics menu. 
 

    
Compute 2–Var Stats. View statistics. Y1( x ) = y  

 
 
(c)  With the calculator’s diagnostics turned on, the LinReg(a+bx) command also displays the values of r 
and r2.  In this case, 2r ≈ 0.7713.  Thus, 77.13% of the variation in brain activity among these subjects is 
explained by the straight-line relationship with social distress score. 
   
 
Exercise 2.53  Compute the mean and standard deviation of the metabolic rates and mean body masses in 
Exercise 2.13 and the correlation between these two variables.  Use these values to find the equation of 
the regression line of metabolic rate on lean body mass. 
 
Solution.  We first enter the data into lists.  Here we use list L3 for the body masses x and list L4 for the 
metabolic rates y.  We then enter the command 2–Var Stats L3,L4 to compute the basic statistics. 
 

   
Enter data. Compute 2–Var Stats. Viewstatistics.
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       We see that x ≈  46.7421, xS ≈ 8.28441, y ≈ 1369.5263, and yS ≈ 257.5041.  Next, we compute the 
correlation with the command LinReg(a+bx) L3,L4, which also gives us the equation of the regression 
line y a bx= +  of metabolic rate on lean body mass.  Finally, we can verify that 

/ 26.87857y xb r S S= × ≈ and 113.1654a y bx= − ≈ 113.1654a y bx= − ≈ .   
 

   
Compute r. r ≈ 0.864736 and 

y ≈ 113.1654 + 26.87857 
Verify values of a and b. 

Access r from VARS, 5, EQ. 
Access other statistics from 

screen VARS, 5. 
 
 
2.4   Cautions about Correlation and Regression 
 
We now complete an exercise to demonstrate how to work with the residuals of a least-squares regression 
line. 
 
 
Exercise 2.74  The following table gives the speeds (in feet per second) and the mean stride rates for 
some of the best female American runners.   
 

Speed 15.86 16.88 17.50 18.62 19.97 21.06 22.11 
Stride Rate 3.05 3.12 3.17 3.25 3.36 3.46 3.55 

 
(a)  Make a scatterplot with speed on the x axis and stride rate on the y axis.  
(b)  Compute and graph the equation of the regression line of stride rate on speed.  
(c)  For each of the speeds given, calculate the predicted stride rate and the residual.  Verify that the 
residuals sum to 0.  
(d)  Plot the residuals against speed. 
 
 
Solution.  (a)  We enter speeds into list L1, the corresponding stride rates into list L2, adjust the 
WINDOW and STAT PLOT settings, and graph. 
 

    
Enter data. Adjust WINDOW. Adjust STAT PLOT. Graph. 

 
 
(b)  Compute the regression line by entering the command LinReg(a+bx) L1,L2, then enter the equation 
of the line into the Y= screen and re-graph. 
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Compute the 

regression line. 
y ≈ 1.776+0.08x Go to Y=, press VARS, 

then 5, arrow  right to 
EQ, press 1 to enter 

the line. 

Graph. 

 
(c)  Once the regression line is entered into Y1, we can access this function from the VARS, Y–VARS, 
Function menu in order to evaluate the predicted stride rates.  On the Home screen, enter the command 
Y1(L1)→L3 to store the predicted values into list L3.  Then enter  the command L2 – L3 →L4 to 
compute the residuals and store them into list L4. 
 

    
Press VARS, arrow 
right to Y–VARS, 

press 1 for Function, 
then press 1 for Y1. 

Compute predicted 
values and store  

into list L3. 

Compute residuals and 
store into L4. 

View predicted values 
and residuals. 

 
       To verify that the residuals sum to 0 (up to round-
off error), simply compute the statistics on their values 
in list L4 by entering the command 1–Var Stats L4.  
We see that their sum, x∑ , is essentially 0. 

   
 
 (d)  Finally, we make a scatterplot of L1 versus L4 to plot the residuals against speed. 
 

    
View range 
of residuals. 

Adjust Y range  
in the WINDOW. 

Adjust Ylist  
in the STAT PLOT. 

Graph. 
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Introduction 
 
In this chapter, we use the TI-83 Plus to simulate the collection of random samples.  We also provide a 
supplementary program that can be used to draw a random sample from a list of integers numbered from 
m to n. 
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3.1   First Steps 
 
In this section, we demonstrate how to generate count data, or Bernoulli trials, 
for a specified proportion p.  The data simulates observational “Yes/No” 
outcomes obtained from a random survey.  To generate the data, we use the 
randBin command from the MATH PRB menu. 

 
 
 
Example  Suppose that 62% of students hold a part-time or full-time job at a particular university.  
Simulate a random survey of 200 students and determine the sample proportion of those who have a job. 
 
Solution.  To generate a random list of 1 and 0 responses (“Yes/No”), enter the command randBin(1,p, 
n)→L1, where p is the specified proportion and n is the desired sample size.  Here, use randBin(1, .62, 
200) →L1.  Then enter the command 1–Var Stats L1. 
 

   
Generate the data. Observe data in 

STAT EDIT screen. 
Compute the sample 

statistics. x  is the sample 
proportion. 

 
      
Example  Generate 150 observations from a (100,15)N  distribution.  Compute the sample statistics to 
compare x with 100 and to compare s with 15. 
 
Solution.  Enter the command randNorm(100, 15, 150) →L1 and then compute the sample statistics. 
 

   
Generate the data. Observe data in 

STAT EDIT screen. 
Compute the sample 

statistics.Observe the sample 
statistics. 

 
 
 
     
3.2   Design of Experiments 
 
Next, we provide a supplementary program that can be used to choose subjects at random from an 
enumerated group. 
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The RANDOM Program 

 
PROGRAM:RANDOM 
:Disp "LOWER BOUND" 
:Input M 
:Disp "UPPER BOUND" 
:Input N 
:Disp "CHOOSE HOW MANY?" 
:Input R 
:ClrList L3 
:seq(J,J,M,N)→L1 
:For(I,1,R) 
:ClrList L2 
:randInt(1,N-M+2-I)→A 
:L1(A)→L3(I) 
:1→K 
:While K<A 

 
:L1(K)→L2(K) 
:1+K→K 
:End 
:A→K 
:While K_N-M+1-I 
:L1(K+1)→L2(K) 
:1+K→K 
:End 
:L2→L1 
:End 
:L3→L1 
:ClrList L2,L3 
:ClrHome 
:Output(1,2,L1) 

 
       The RANDOM program can be used to choose a random subset of k subjects from a group that has 
been numbered from m to n.  It also can be used to permute an entire set of n subjects so that the group 
can be assigned randomly to blocks.  The program displays the random choices and also stores the values 
into list L1. 
 
 
Exercise 3.13  Randomly assign 36 subjects into four groups of size 9. 
 
Solution.  We execute the RANDOM program by numbering the subjects from 1 to 36 and choosing all 
36. 
 

                 
 
       The 36 subjects have been permuted so that they can be assigned randomly to four groups.  Simply 
use consecutive groups of nine for these groups: {16, 8, 18, 35, 17, 2, 24, 28, 5}, {4, 11, 25, 30, 1, 13, 31, 
26, 36}, {27, 23, 34, 15, 20, 22, 7, 10, 14}, {32, 9, 21, 3, 33, 19, 6, 12, 29}. 
 
 
Exercise 3.20  Randomly choose 20 subjects from a group of 40. 
 
Solution.  We label the subjects from 1 to 40 and then 
randomly choose 20. 
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3.3   Sampling Design 
 
The RANDOM program can be used to choose a simple random sample from a designated population.  
This program chooses the sample all at once without repeated choices.  But instead, we may want to use a 
systematic random sample by drawing one subject at a time from sequential groups.  The following 
exercise demonstrates this process. 
 
 
Exercise 3.47  Choose a systematic random sample of four addresses from a list of 100. 
 
Solution.  Because the list of 100 divides evenly into four groups of 25, we will choose one address from 
each of the groups 1–25, 26–50, 51–75, and 76–100.  And because we are choosing only one number at a 
time, we can use the randInt( command from the MATH PRB menu.  To choose one integer from a to 
b, enter the command randInt(a, b).  We use the command four times as shown below to obtain the 
desired sample. 
 

                 
 

Number of Ways to Choose 
 
When choosing a simple random sample of size r from a population of size n, 
we generally choose without repeats and without regard to order.  Such a choice 
is called a combination.  The number of possible combinations (often called “n 
choose r”) can be computed with the nCr button from the MATH PRB menu.   

 
 
Exercises 3.44, 3.46  (a)  How many ways are there to choose five blocks from a group of blocks labeled 
1–44?  (b)  How many ways are there to choose a stratified sample of five blocks so that there is one 
chosen from blocks 1–6, two chosen from blocks 7–18, and three chosen from blocks 19–44.  (c)  In each 
case, choose such a sample. 
 
Solution.  (a)  There are “44 choose 5” ways to pick five blocks at random from 
44, which is computed by 44 nCr 5 on the calculator.  Thus, there are 1,086,008 
possible samples in this case.   

 
 
(b)  We choose one from the first group of 6 blocks, choose two from the second group of 12 blocks, and 
choose three from the third group of 26 blocks.  The total number of ways to choose in this manner is 
given by (6 nCr 1)× (12 nCr 2)× (26 nCr 3) = 6 × 66 × 2600 = 1,029,600. 
 

                 



Producing  Data          23 
 
(c)  We can choose the samples in each case with the RANDOM program. 
 

                
 

                  
 
3.4   Toward Statistical Inference 
 
In Section 3.1, we used the command randBin(1, p, n)→L1 to generate a random sample of “Yes/No” 
responses.  In this section, we will demonstrate how to simulate the collection of multiple samples.  In 
particular, we are concerned with the total number of “Yes” responses, the sample proportion for each 
sample, and the resulting average of all sample proportions.  This simulation also can be made with the 
randBin( command from the MATH PRB menu. 
 
Exercise 3.73  (a)  We have a coin for which the probability of heads is 0.60.  We toss the coin 25 times 
and count the number of heads in this sample.  Then we repeat the process for a total of 50 samples of 
size 25.  Simulate the counts of heads for these 50 samples of size 25, compute the sample proportion for 
each sample, and make a histogram of the sample proportions. 
 
Solution.  One simulated sample of counts can be obtained with the command randBin(25, 0.6). But 
because we want 50 samples of size 25, we will use the command randBin(25, 0.6, 50) →L1 in order to 
generate the counts and store them into list L1.  Then the command L1/25 →L2 will compute the sample 
proportion for each sample and store the results in list L2.  By computing the sample statistics on list L2, 
we obtain the average of all the sample proportions. 
 

   
Generate counts 
and proportions. 

View results. Compute average 
of all proportions. x  = 0.5992 

 
       By observing the list of sample proportions in L2, we see that we may never have a sample 
proportion that equals the real proportion of 0.60.  However, the average of all 50 sample proportions was 
0.5992, which is very close to 0.60.  Lastly, adjust the WINDOW and STAT PLOT settings to see a 
histogram of the sample proportions in list L2. 
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Introduction 
 
In this chapter, we show how to use the TI-83 Plus to generate some random sequences.  We then see how 
to make a probability histogram for a discrete random variable and how to compute its mean and standard 
deviation.  We conclude with a program for the Law of Total Probability and Bayes’ Rule. 
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4.1   Randomness 
 
In this section, we work some exercises that use the TI-83 Plus to generate 
various random sequences.  We shall need the randBin( and randInt( 
commands from the MATH PRB menu.  

 
 
Exercise 4.5  Simulate 100 free throws shot independently by a player who has 0.5 probability of making 
a single shot.  Examine the sequence of hits and misses. 
 
Solution.  The command randBin(1,.5,100)→L1 will 
generate and store a list of 100 “1’s and 0’s” to 
represent the hits and misses.  The results are stored in 
the STAT EDIT screen. 

   
 
 
 
Exercise 4.7  Simulate rolling four fair dice over and over again.  What percentage of the time was there 
at least one “6” in the set of four rolls? 
 
Solution.  The command randInt(j, k) generates a random integer from j to k.  The command randInt(j, 
k, n) generates n such random integers.  Here we enter the command randInt(1, 6, 4) to simulate four 
rolls of dice numbered 1 to 6.  After entering the command once, keep pressing ENTER to reexecute the 
command. 
 

                
  
       In the 27 sets shown above, there are 14 sets with at least one “6,” which gives 51.85%. 
 
 
 
Exercise 4.9  Simulate 100 binomial observations each with n = 20 and p = 0.3.  Convert the counts into 
percents and make a histogram of these percents.   
 
Solution.  The command randBin(20, 0.3,100)→L1 
will generate the observations and put them in list L1, 
and the command 100*L1/20→L2 will put the percents 
into list L2.  

  
 Generate counts 

and percents. 
View results. 
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Next, adjust the WINDOW and STAT PLOT settings to make a histogram of the percents in list L2. 
 

                 
 
 
4.2   Probability Models 
 
In this section, we demonstrate some of the basic concepts of probability models. 
 
Example 4.6  (a)  Generate random numbers between 0 and 1.  (b)  Make a histogram of 100 such 
randomly generated numbers. 
 
Solution.  (a)  Simply enter the command rand from the MATH PRB menu.  
After the command has been entered once, keep pressing ENTER to continue 
generating more random values between 0 and 1.  (b)  Enter the command 
rand(100)→L1 to generate and store 100 random numbers between 0 and 1. 

 

    
Generate list. Adjust WINDOW. Adjust STAT PLOT. Graph. 

 
Example 4.9  The first digit V of numbers in legitimate records often follow the distribution given in the 
table below, known as Benford’s Law.  (a)  Verify that the table defines a legitimate probability 
distribution.   (b)  Compute the probability that the first digit is 6 or greater.  
 

First digit V 
 1 2 3 4 5 6 7 8 9 

Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 
 
Solution.  (a)  To sum these probabilities, we can enter the values into a list and use the two commands 
sum( and seq( from the LIST MATH and LIST OPS menus. 
       First, enter the values of the digits into list L1 (optional) and enter the probabilities into list L2.  To 
verify that the table gives a legitimate probability distribution, enter the command sum(seq(L2(I), I, 1, 
9)), which sums the values in list L2 as the index I ranges from 1 to 9. 
 

    
Enter distribution. Press LIST (2nd 

STAT), arrow right to 
MATH, press 5. 

Press LIST (2nd 
STAT), arrow right to 

OPS, press 5. 

Sum the list  
from 1 to 9. 
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(b) After summing all the probabilities, press 2nd ENTER to recall the previous command, then edit it to 
sum(seq(L2(I), I, 6, 9)) to sum the sixth through ninth probabilities. We see that the probability of the 
first digit being 6 or greater is 0.222.  
 
 
4.3   Random Variables 
 
In this section, we work exercises that compute various probabilities involving random variables.   We 
begin though with an exercise on constructing a probability histogram. 
 
 
Exercises 4.43, 4.45  The table below gives the distributions of rooms for owner-occupied units and for 
renter-occupied units in San Jose, California.  Make probability histograms of these two distributions.  If 
X represents the number of rooms in a randomly chosen owner-occupied unit, compute ( 5)P X > . 
 

Rooms 1 2 3 4 5 6 7 8 9 10 
Owned 0.003 0.002 0.023 0.104 0.210 0.224 0.197 0.149 0.053 0.035 
Rented 0.008 0.027 0.287 0.363 0.164 0.093 0.039 0.013 0.003 0.003 

 
 
Solution.  We enter the values of the rooms into list L1, the owner probabilities into list L2, and the renter 
probabilities into list L3.  Then we make separate histograms for an Xlist of L1 with frequencies of either 
L2 or L3.     
 

    
Enter data. Adjust WINDOW. Adjust Plot1 for 

frequencies L2. 
Adjust Plot2 for 
frequencies L3. 

 

  
Owner-occupied Renter-occupied 

 
 
       The value ( 5)P X >  is equivalent to (6 10)P X≤ ≤ .  This value can be computed with the 
command sum(seq(L2(I), I, 6, 10)), which gives 0.658. 
 
Exercise 4.55  Let Y U∼ [0, 2].  (a)  Graph the density curve.   (b)  Find (0.5 1.3)P Y≤ ≤ .     
 
Solution.  For Y U∼ [0, 2], the height of the density curve is 1/(2 – 0) = 0.5.  We simply enter this 
function into the Y= screen and use item 7 from the CALC menu to compute the area between the values 
0.5 and 1.3. 
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Enter 1/2  

into Y= screen. 
Set WINDOW 

with X from 0 to 2. 
Press CALC (2nd 
TRACE), then 7. 

When screen appears, 
type .5 

 

    
Press ENTER after 

typing .5. 
When new screen 
appears, type 1.3. 

Press ENTER after 
typing 1.3. 

P ( 0 . 5 ≤ Y ≤ 1 . 3 )   
is shown as 0.4. 

 
 
       We conclude this section by working an exercise using the normal density curve that reviews the 
normal distribution calculations from Section 1.3. 
 
 
Exercise 4.58   After an election in Oregon, voter records showed that 56% of registered voters actually 
voted.  A survey of 663 registered voters is conducted and the sample proportion p̂  of those who claim 
to have voted is obtained.  For all random samples of size 663, these values of the sample proportions p̂  
will follow an approximate normal distribution with mean µ = 0.56 and standard deviation σ = 0.019.  
Use this distribution to compute ˆ(0.52 0.60)P p≤ ≤ ˆ(0.52 0.60)P p≤ ≤  and 

ˆ( 0.72)P p ≥ ˆ( 0.72)P p ≥ . 
 
Solution.  We use the built-in normalcdf( command 
from the DISTR menu.  
For ˆ (0.56,0.019)p N∼ ˆ (0.56,0.019)p N∼ , we use 

ˆ(0.52 0.60)P p≤ ≤  = normalcdf(.52, 0.6, .56, .019) 
and ˆ( 0.72)P p ≥  = normalcdf(.72, 1E99, .56, .019).   

 ˆ(0.52 0.60)P p≤ ≤  ˆ( 0.72) 0P p ≥ ≈  
 
4.4   Means and Variances of Random Variables 
 
We now show how to compute the mean and standard deviation of a discrete random variable for which 
the range of measurements and corresponding probabilities are given. 
 
 
Exercise 4.61  The table below gives the distributions of the number of rooms for owner-occupied units 
and renter-occupied units in San Jose, California.  Calculate the mean and the standard deviation of the 
number of rooms for each type. 
 

Rooms 1 2 3 4 5 6 7 8 9 10 
Owned 0.003 0.002 0.023 0.104 0.210 0.224 0.197 0.149 0.053 0.035 
Rented 0.008 0.027 0.287 0.363 0.164 0.093 0.039 0.013 0.003 0.003 
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Solution.  Enter the measurements (rooms) into list L1 and the probabilities into lists L2 and L3.  For the 
owner-occupied units, enter the command 1–Var Stats L1,L2.  We see that the average number of rooms 
for owner-occupied units is µ = 6.284 with a standard deviation of σ ≈  1.64.  For the renter-occupied 
units, enter the command 1–Var Stats L1,L3 to obtain µ = 4.187 and σ ≈ 1.3077. 
 

   
Enter data. Compute stats. Owner-occupiedRenter-occupied 

 
 

    Sampling from a Discrete Distribution 
 

Previously, we have used commands such as randNorm(100, 15, n)→L1, 2*rand(n)→L1, and 
randBin(20, 0.3, 100)→L1 to generate lists of random values from normal, uniform, and binomial 
distributions.  We now provide a short program that will draw a random sample from a discrete 
distribution provided its table of probabilities is given. 
       

The DISTSAMP Program   
 

PROGRAM:DISTSAMP 
:Disp "NO. OF POINTS?" 
:Input N 
:ClrList L4 
:cumSum(L2)→L3 
:For(I,1,N) 
:1→J 
:rand→A 
:While A>L3(J) 
:J+1→J 

:End 
:L1(J)→L4(I) 
:End 
:1-Var Stats L1,L2 
: x→B 
:1-Var Stats L4 
: x→C 
:ClrHome 
:Disp "REAL MEAN",B 
:Disp "SAMPLE MEAN",C 

 
 
Example  Draw a random sample of 250 points according to a distribution that follows Benford’s Law as 
given in the following table.  Compare the sample mean with the true average, make a histogram of the 
sample points, and find the sample proportions of each digit. 
 

First digit V 
 1 2 3 4 5 6 7 8 9 

Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 
 
Solution.  Before running the DISTSAMP program, 
enter the values of the digits into list L1  and enter the 
probabilities into list L2.  Then bring up the program 
and enter the desired number of sample points.  This 
sample will be stored in list L4.   
 Enter distribution. Execute program. 
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Output of program Adjust WINDOW. Adjust STAT PLOT 

for a histogram of L4. 
Graph and trace. 

 
       By graphing and tracing the histogram of sample points in list L4, we can see the sample counts of 
each digit.  In this case, the digit 1 was chosen 70 times for a sample proportion of 70/250 = 0.28. 
 
 

Mean and Standard Deviation of an Independent Sum 
 
Here we show how to verify the mean and standard deviation of a random variable of the form 
Z aX bY= + , where X  and Y  are independent.    
 
 
Example  Suppose that 0.2 0.8Z X Y= + , where 5Xµ = , 2.9Xσ = , 13.2Yµ = , 
and 17.6Yσ = .  Assuming that X and Y are independent, find the mean and standard deviation of Z. 
 
Solution.  We can think of X as taking two values 5 2.9 2.1− =  and 5 2.9 7.9+ =  (see Exercise 4.78 
in the text).  Likewise, we can consider Y  to assume only the values  13.2 17.6 4.4− = −  
and 13.2 17.6 30.8+ = .  We enter these values of X and Y into lists L1 and L2; however, we list each X 
value twice in consecutive fashion (2.1, 2.1, 7.9, 7.9), and we list the Y values twice in alternating fashion 
(–4.4, 30.8, –4.4, 30.8).  Next, we enter the command 0.2*L1 + 0.8*L2→L3 to send the possible values of 
Z to list L3.  Finally, enter 1–Var Stats L3 to compute the mean and standard deviation of Z. 
 

    
Input values 
of X and Y. 

Send values of Z 
to list L3. 

Compute stats 
on L3. 

µZ= 11.56 
Zσ ≈ 14.09194 

 
 
       We  thereby can verify that 0.2 0.8Z X Yµ µ µ= +  and, because X and Y are independent, 

that 2 2 2 20.2 0.8Z X Yσ σ σ= + .  However, if Z aX bY= +  and X and Y are not independent, then 
2 2 2 2 2 2Z X Y X Ya b a bσ σ σ ρ σ σ= + +  (see Example 4.28 in the text). 
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4.5   General Probability 
 
We conclude this chapter with a short program for the Law of Total Probability and Bayes’ Rule.  The 
BAYES program given below computes and displays the total probability P(C) according to the formula   
 

P ( C ) = P ( A 1 ) P ( C | A 1 ) + P ( A 2 ) P ( C | A 2 ) + . . . . + P ( A n ) P ( C | A n )  
 
Before executing the BAYES program, enter the given probabilities P ( A 1 ) , . . . , P ( A n )  into list L1 and 
the given conditionals P ( C | A 1 ) , ... , P ( C | A n )  into list L2.   
       The program also stores the probabilities of the intersections 1( )P C A∩ , . . . , ( )nP C A∩ in list 

L3, and stores the reverse conditionals P ( A 1 | C ) , . . . , P ( A n | C )  in list L4.  Finally, the conditional 
probabilities P ( A 1 | ′ C ) , . . . , P ( A n | ′ C )  are stored in list L5, and the conditional probabilities 
P ( C ′ A 1 ) , . . . , P ( C ′ A n )  are stored in list L6.  To help the user keep track of which list contains which 
probabilities, the program displays a description. 
 
 

The BAYES Program 
 

PROGRAM:BAYES 
:sum(seq(L1(I)*L2(I),I,1,dim(L1)))→T 
:L1*L2→L3 
:L3/T→L4 
:L1*(1-L2)/(1-T)→L5 
:T*(1-L4)/(1-L1)→L6 

:Disp "TOTAL PROB" 
:Disp round(T,4) 
:Disp "C AND As : L3" 
:Disp "As GIVEN C : L4" 
:Disp "As GIVEN C' : L5" 
:Disp "C GIVEN A's : L6" 

 
 
 
Exercise 4.104  The voters in a large city are 40% white, 40% black, and 20% Hispanic.  A mayoral 
candidate expects to receive 30% of the white vote, 90% of the black vote, and 50% of the Hispanic vote.  
Apply the BAYES program to compute the percent of the overall vote that the candidate expects, and to 
analyze the other computed conditional probabilities. 
 
 
Solution.  Here we let A1 = white voters, A2= black voters, and 3A  = Hispanic voters.  We enter the 
probabilities of these events into list L1.  We let C be the event that a person votes for the candidate.  
Then 1(  | ) 0.30P C A = , 2(  | ) 0.90P C A = , and 3(  | ) 0.50P C A = , and we enter these conditional 
probabilities into list L2.   Then we execute the BAYES program. 

 

   
Enter probabilities. 

Execute BAYES. 
Output of program Probability of 

intersections in L3 
Conditionals in lists 

L4, L5, and L6 
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       We first see that the candidate can expect to receive 58% of the overall vote.  This result is obtained 
by  ( ) 0.4 0.3 0.4 0.9 0.2 0.5 0.58P C = × + × + × = .  The other computed probabilities are also stored in 
the designated lists. 
 
       List L3 contains the probabilities of the intersections.  The probability that a voter is white and will 
vote for the candidate is 1( )P A C∩  = 0.12.  The probability that a voter is black and will vote for the 
candidate is 2( )P A C∩  = 0.36.  The probability that a voter is Hispanic and will vote for the candidate is 

3( )P A C∩  = 0.1.  These values are obtained with the formula ( ) ( ) ( | )i i iP A C P A P C A∩ = × , and are 
found by multiplying the terms in lists L1 and L2. 
 
       List L4 contains the reverse conditional probabilities of being white, black, Hispanic given that one 
will vote for the candidate.  This list is the direct application of Bayes’ Rule.  These conditional 
probabilities are 1(  | ) 0.2069P A C = , 2(  | ) 0.62069P A C = , and 3(  | ) 0.17241P A C = , respectively.  
This list is obtained by dividing the respective intersection probabilities in list L3 by P(C)= 0.58. 
 
       List L5 contains the reverse conditional probabilities of being white, black, Hispanic given that one 
will not vote for the candidate.  These values are 1( )P A C′  = 0.66667, 2( )P A C′ = 0.09524, and 

3( )P A C′  = 0.2381, respectively. 
 
       List L6 contains the conditional probabilities of voting for the candidate given that a voter is not 
white, not black, and not Hispanic.  These values are 1( )P C A′  = 0.76667, 2( )P C A′ = 0.36667, and 

3( )P C A′  = 0.6, respectively. 
 
       We note that given any conditional probability P(C | D), then the complement conditional probability 
is given by ( ) 1 ( )P C D P C D′ = − .  Thus, lists for complement conditional probabilities do not need to 
be generated.  For example, the respective conditional probabilities of not voting for the candidate given 
that one is white, black, and Hispanic are respectively 0.70, 0.10, and 0.50.  These values are the 
complement probabilities of the originally given conditionals. 
 
 
Exercise 4.111  Cystic fibrosis.  The probability that a randomly chosen person of European ancestry 
carries an abnormal CF gene is 1/25.  If one is a carrier of this gene, then a test for it will be positive 90% 
of the time.  If a person is not a carrier, then the test will never be positive.  Jason tests positive.  What is 
the probability that he is a carrier? 
 
Solution.  We let C be the event that a person of European ancestry tests positive, let 1A  be carriers of the 
gene, and let 2A  be non-carriers.  Because 1( ) 1/ 25P A = , then 2( ) 24 / 25P A = .  Also, 

1( ) 0.90P C A = , 2( ) 0P C A = .  We are trying to compute 1( )P A C , which is the probability of being a 
carrier given that one has tested positive. 
       We enter the probabilities 1( )P A  and 2( )P A  into list L1, enter the conditional probabilities 

1( )P C A  and 2( )P C A  into list L2, and execute the BAYES program. 
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Enter probabilities. 

Execute BAYES. 
Output of program P ( A i | C )  are in list L4. 

 
                 

       List L4 contains the conditionals ( )iP A C ( )iP A C .  From the first entry, we see that 1( )P A C  = 1.  
Because Jason has tested positive, there is a 100% chance that he is a carrier.  (He must be a carrier 
because it is impossible for non-carriers to test positive.)  This value is also given by 
 

1
1

P(A ) (1/ 25) 0.90(  | C) = 1
( ) (1/ 25) 0.90 (24 / 25) 0

CP A
P C

∩ ×
= =

× + ×
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Introduction 
 
In this chapter, we show how to compute probabilities involving a binomial distribution and 
probabilities involving the sample mean x .   
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5.1   Sampling Distributions for Counts and Proportions 
 
We begin by demonstrating how to compute various probabilities for a 
given binomial distribution.  To do so, we will need the binompdf( and 
binomcdf( commands (items 0 and A) from the DISTR menu. 

 
 

Binomial Probabilities 
 
For a binomial distribution X ~ B(n, p) , we compute the probability of exactly k  successes, 
P(X = k ) , by entering the command binompdf(n, p, k).  The probability P(X ≤ k)  = P(0 ≤ X ≤ k )  
of at most k  successes is computed with the command binomcdf(n, p, k).  The probability of 
there being at least k  successes is given by P(X ≥ k ) = 1 − P( X ≤ k −1) , and is computed with 
the command 1 – binomcdf(n, p, k–1).  The following three examples demonstrate these 
calculations. 
 
 
Example 5.4  Let X ~ B(150, 0.08) .  Calculate P(X = 10)  and P(X ≤ 10) . 
 
Solution.  Simply enter the commands binompdf(150, .08, 10) and 
binomcdf(150, .08, 10) to obtain P(X = 10)  ≈ 0.106959 and P(X ≤ 10)  ≈  
0.338427. 

 
 
 
Example 5.5  Let X ~ B(15, 0.08) .  Make a probability table and probability histogram of the 
distribution.  Also make a table of the cumulative distribution and use it to find P(X ≤ 1) . 

 
Solution.  Because there are n  = 15 attempts, the possible number of successes range from 0 to 
15.  So we first enter the integer values 0, 1, . . . , 15 into list L1.  We can do so directly or we can 
use the command seq(K, K, 0, 15)→L1.  Next, we use the commands binompdf(15, .08)→L2 
and binomcdf(15, .08)→L3 to enter the probability distribution values P(X = k )  into list L2 and 
the cumulative distribution values P(X ≤ k )  into list L3.  From the values in list L3, we can see 
that P(X ≤ 1)  ≈ 0.65973. 
 

    
Enter range into L1. Enter pdf into L2. Enter cdf into L3. P(X ≤ 1)  ≈ 0.65973 

 
 
       To see a probability histogram of the distribution, adjust the WINDOW and STAT PLOT 
settings for a histogram of L1 with frequencies L2.  We note that the probabilities beyond X  = 6 
will not be observable. 
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Adjust WINDOW. Adjust STAT PLOT. Graph. Trace. 

 
 
Example 5.6  Let X ~ B(12, 0.25) , compute P(X ≥ 5) . 
 
Solution.  We use the probability of the complement to obtain P(X ≥ 5)  = 
1 –  P(X ≤ 4) , which is computed by 1 – binomcdf(12, .25, 4) ≈ 0.15764. 

 
 
 

Probabilities for ˆ p  
 
The next two problems show how to make probability calculations for a sample proportion ˆ p  
by converting to a binomial probability. 
 
 
Example 5.8  Suppose that 60% of all adults agree that they like shopping for clothes, but often 
find it frustrating and time-consuming.  In a nationwide sample of 2500 adults, let ˆ p  be the 
sample proportion of adults who agree with this response.   Compute P( ˆ p ≥ 0.58) . 
 
Solution.  Because 58% of 2500 is 1450, we must compute P(X ≥ 1450) , 
where X ~ B(2500, 0.60) .  Instead, we may compute 1 − P(X ≤ 1499)  by 
1 – binomcdf(2500, .60, 1499) ≈ 0.98018. 

 
 
 
Exercise 5.15  (b)  For an SRS of size n  = 1011 and assuming a true proportion of p  = 0.06, what 
is the probability that a sample proportion ˆ p  lies between 0.05 and 0.07?  
 
Solution.  For n  = 1011 and p  = 0.06, then P 0.05 ≤ ˆ p ≤ 0.07( )  = 
P n × 0.05 ≤ X ≤ n × 0. 07( )  = P 50.55 ≤ X ≤ 70.77( )  = P 51 ≤ X ≤ 70( )  = 
P X ≤ 70( ) − P X ≤ 50( ) , where X ~ B(1011, 0.06) .   We find this value by 
entering binomcdf(1011, .06, 70) – binomcdf(1011, .06, 50), and obtain a 
probability of about 0.815266.  
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Normal Approximations 
 
We conclude this section by showing how to approximate a sample proportion probability and 
a binomial probability with a normal distribution. 
 
 
Example 5.10  With n  = 2500 and p  = 0.60 as in Example 5.8, use the approximate  distribution 
of ˆ p  to estimate P( ˆ p ≥ 0.58) . 
 
Solution.  The distribution of ˆ p  is approximately normal with µ  = p  = 
0.60 and σ  = p(1 − p) / n  = 0.60 × 0. 40 / 2500  ≈ 0.0098.  Thus, 
P( ˆ p ≥ 0.58)  ≈ P(Y ≥ 0.58) , where Y  ~ N (0.60, 0.0098).  The command 
normalcdf(.58, 1E99, .6, .0098) gives a probability of about 0.97936. 

 
 
 
Exercise 5.20  Let X ~ B(1500,0.7) .  (a)  What are the mean and standard deviation of X ?   
(b)  Use the normal approximation to find P(X ≥ 1000) . 
 
Solution.  (a) The mean is µ  = n p  = 1500 ×  0.70 = 1050, and the standard deviation is 
σ = n p (1 − p) = 1500 × 0. 70 × 0.30 = 315 .    
 
(b)  We now let Y  ~ N (1050, 315 ).  Then P(X ≥ 1000)  ≈ P(Y ≥ 1000) , 
which is found with the command normalcdf(1000,1E99,1050,√(315)).  
We see that P(X ≥ 1000)  ≈ 0.9976. 

 
 
5.2   The Sampling Distribution of a Sample Mean 
 
We now show how to compute various probabilities involving the sample mean x .  To do so, 
we make use of the fact that for random samples of size n  from a N (µ , σ ) distribution, the 
sample mean x  follows a N (µ , σ / n ) distribution. 
 
Exercise 5.37  Sheila’s glucose level one hour after ingesting a sugary drink varies according to 
the normal distribution with µ  = 125 mg/dl and σ  = 10 mg/dl.  
 
(a)  If a single glucose measurement is made, what is the probability that Sheila measures above 
140?   
(b)  What is the probability that the sample mean from four separate measurements is above 
140?  
 
Solution.  (a)  We compute P(X > 140)  for X  ~ N (125, 10) with the 
command normalcdf(140, 1E99, 125, 10).  Then, P(X > 140)  ≈ 0.0668. 
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(b)  For an SRS of size n  = 4, x  has a mean of µ  = 125 and a standard 
deviation of σ / n  = 10/ 4  = 5.  So now we compute P(x > 140)  for x  
~ N (125, 5) and obtain a value of about 0.00135. 
 

 
 
 
Exercise 5.39  Sheila’s glucose level one hour after ingesting a sugary drink varies according to 
the normal distribution with µ  = 125 mg/dl and σ  = 10 mg/dl.  What is the level L  such that 
there is only 0.05 probability that the mean glucose level of four test results falls above L  for 
Sheila’s glucose level distribution? 
 
Solution.  As in Exercise 5.37, x  ~ N (125, 5). So we must find the inverse 
normal value L  for which P(x > L)  = 0.05 or, equivalently, P(x ≤ L)  = 
0.95.  We compute this value with the invNorm( command from the 
DISTR menu by entering invNorm(.95,125,5).  We see that only about 
5% of the time should x  be larger than L  = 133.224.  
 
 
Exercise 5.59  The weight of eggs produced by a certain breed of hen is normally distributed 
with a mean of 65 g and a standard deviation of 5 g.  For random cartons of 12 eggs, what is the 
probability that the weight of a carton falls between 750 g and 825 g? 
 
Solution.   If the total weight of 12 eggs falls between 750 g and 825 g, 
then the sample mean x  falls between 750/12 = 62.5 g and 825/12 = 
68.75 g.  So, we  compute P(62.5 ≤ x ≤ 68. 75)  for x  ~ N (65, 5/ 12 ) by 
entering the command normalcdf(62.5, 68.75, 65, 5/√(12)). 

 
 
Note:  By the Central Limit Theorem, when sampling from an non-normal population with a 
“large” sample size n , the sample mean x  follows an approximate N (µ , σ / n ) distribution.  
Thus, probabilities involving x  can be approximated by a normal distribution calculation as in 
Exercise 5.37 (b) and Exercise 5.59. 

 
Sum of Independent Normal Measurements 

 
Let X  ~ N (µ X , σX ) and let Y  ~ N (µY , σY ).  Assuming that X  and Y  are independent 

measurements, then X ± Y  follows a N µX ± µY , σ X
2 + σY

2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  distribution.   

 
Example 5.19  Suppose X  ~ N (110, 10) and Y ~ N (100, 8).   If X  and Y  are independent, then 
what is the probability that X  is less than Y ? 
 
Solution.  The value P(X < Y )  is equivalent to P(X − Y < 0 ) .  So we need 
to use the distribution of the difference X − Y  which is 

N (110 − 100, 102 + 82 ) = N 10, 164( ). By entering the command 

normalcdf(-1E99, 0, 10, √(164)), we find that P(X − Y < 0 )  ≈ 0.21744.  
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Sum and Difference of Sample Means 
 
Let x  be the sample mean from an SRS of size n  from a N (µ X , σ X ) distribution, and let y  be 
the sample mean from an independent SRS of size m  from a N (µY , σY ) distribution.  Then, the 

sum/difference x ± y  follows a N µX ± µY , σ X
2 / n + σ Y

2 / m⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  distribution. 

 
 
Exercise 5.46  Let y  be the sample mean from a group of size 30 from a N (4.8, 1.5)  population, 
and let x  be the sample mean from an independent group of size 30 from a N (2.4, 1.6)  
population.  What is the distribution of y  – x ?  Find P(y − x ≥ 1) . 
 

Solution.   First, y − x  ~ N (4.8 − 2.4 , 1.52 / 30 + 1.62 / 30 ) = 
N (2.4, 0.4 ) .  Thus, we find P(y − x ≥ 1)  with the command 
normalcdf(1, 1E99, 2.4, 0.4) and obtain a value of 0.999767. 
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Introduction 
 
In this chapter, we show how to use the TI-83 Plus to compute confidence intervals and conduct 
hypothesis tests for the mean µ  of a normally distributed population with known standard deviation σ . 
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6.1   Estimating with Confidence 
 
In this section, we show how to compute a confidence interval for the mean of a 
normal population with known standard deviation σ .  To do so, we will use the 
built-in ZInterval feature (item 7) from the STAT TESTS menu.  The 
following two exercises demonstrate how to use this feature with summary 
statistics and with a data set.  

 
        
Exercise 6.5  In a study of bone turnover in young women, serum TRAP was measured in 31 subjects and 
the mean was 13.2 U/l.  Assume that the standard deviation is known to be 6.5 U/l.  Give the margin of 
error and find a 95% confidence interval for the mean of all young women represented by this sample. 
 
 
Solution.  Bring up the ZInterval screen, set the Inpt to Stats, then enter the given values of 6.5 for σ , 
13.2  for x , and 31 for n.  Enter the desired confidence level, then press ENTER on Calculate.  We 
obtain a 95% confidence interval of (10.912, 15.488). 
       Because the confidence interval is of the form x m± , we can find the margin of error m by 
subtracting x  from the right endpoint of the interval:  15.488 − 13.2 = 2.288. 
 

   
Enter stats into ZInterval 

screen, then Calculate. 
A 95% confidence  

interval is displayed. 
Margin of error 

 
 
Exercise 6.17  Here are the values of the average speed (in mph) for a sample of trials on a vehicle 
undergoing a fuel efficiency test.  Assume that the standard deviation is 10.3 mph.  Estimate the mean 
speed at which the vehicle was driven with 95% confidence. 
 

21.0 19.0 18.7 39.2 45.8 19.8 48.4 21.0 29.1 35.7 
31.6 49.0 16.0 34.6 36.3 19.0 43.3 37.5 16.5 34.5 

 
 
Solution.  First, enter the data into a list, say list L1.  Next, bring up the ZInterval screen, set the Inpt to 
Data, and enter the given value of 10.3 for σ .  Set the List to L1 with frequencies 1, enter the desired 
confidence level, and press ENTER on Calculate. 
 

   
Enter data. Adjust ZInterval screen. The confidence interval and 

statistics are displayed. 
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Choosing the Sample Size 

 
Suppose we want to find the minimum sample size n  that will produce a desired margin of error m with a 
specific level of confidence.   To do so, we can use the formula 2( * / )n z mσ≥ × , where z* is the 
appropriate critical value.  We also could use a program that computes the (rounded-up) sample size.  To 
execute the ZSAMPSZE program that follows, we simply input the values of the standard deviationσ , 
the desired margin of error, and the desired confidence level in decimal. 
 

The ZSAMPSZE Program 
 

PROGRAM:ZSAMPSZE 
:Disp "STANDARD DEV." 
:Input S 
:Disp "DESIRED ERROR" 
:Input E 
:Disp "CONF. LEVEL" 
:Input R 
:invNorm((R+1)/2,0,1)→Q 
:(Q*S/E)2→M 

:If int(M)=M 
:Then 
:M→N 
:Else 
:int(M+1)→N 
:End 
:ClrHome 
:Disp "SAMPLE SIZE=" 
:Disp int(N) 

 
 
Example 6.6  Suppose we want a margin of error of $2000 with 95% confidence when estimating the 
mean debt for students completing their undergraduate studies.  The standard deviation is about $49,000.  
(a) What sample size is required?  (b) What sample size would be required to obtain a margin of error of 
$1500? 
 
Solution.  The critical value for 95% confidence is z* = 1.96.  Using this value in the formula 

2( * / )z mσ× , with σ  = 49,000 and m = 2000, we obtain a necessary sample size of n = 2306.  The same 
result is obtained by using the ZSAMPSIZE program.  Working part (b) similarly with m = 1500, we 
obtain a required sample size of n = 4100. 
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6.2   Tests of Significance 
 
We now show how to use the TI-83 Plus to perform one-sided and two-sided 
hypothesis tests about the mean µ  of a normally distributed population for 
which the standard deviation σ  is known.  To do so, we will use the Z–Test 
feature (item 1) from the STAT TESTS menu.  We can use this feature to work 
with either summary statistics or data sets.  

 
 
Example 6.14  The mean systolic blood pressure for males 35 to 44 years of age is 128 and the standard 
deviation is 15.  But for a sample of 72 company executives in this age group, the mean systolic blood 
pressure is x  = 126.07.  Is this evidence that the company’s executives in this age group have a different 
mean systolic blood pressure from the general population? 
 
Solution.  To test if the mean is different from 128, we use the null hypothesis 0 :H µ  = 128 with a two-
sided alternative : 128aH µ ≠ .  Bring up the Z–Test screen and adjust the Inpt to STATS, which allows 
us to enter the statistics.  Enter the values 0 128µ = 0 128µ = , 15σ = , 126.07x = , and n = 72.  Set the 
alternative to ≠ µσ , then press ENTER on either Calculate or Draw. 
 

   
Adjust Z–Test screen. Calculate output. Draw output. 

 
       We obtain a z test statistic of –1.0918 and a P-value of 0.2749.  For this two-sided test, the P-value 
comes from the sum of both tail probabilities: ( 1.0918) ( 1.0918)P Z P Z≤ − + ≥ . If the true mean for all 
the company’s executives in this age group were equal to 128, then there would be a 27.49% chance of 
obtaining an x  as far away as 126.07 with a sample of size 72.  This rather high P-value does not gives 
us good evidence to reject the null hypothesis. 
 
 
Example 6.15  An SRS of 500 California high school seniors gave an average SAT mathematics score of 
x  = 461.  Is this good evidence against the claim that the mean for all California seniors is no more than 
450?  Assuming that σ  = 100 for all such scores, perform the test 0 : 450H µ = , : 450aH µ > .  Give the 
z test statistic and the P-value. 
 
Solution.  Bring up the Z–Test screen from the STAT TESTS menu and adjust the Inpt to STATS.  
Enter the value of 0µ  = 450 and the summary statistics, set the alternative to > 0µ , then scroll down to 
Calculate and press ENTER. 
 

  
Adjust Z-Test screen. Calculate output. 
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       We obtain a z test statistic of 2.46 and a P-value of 0.00695.  Because the P-value is so small, we 
have significant evidence to reject 0H .  For if the true mean were 450, then there would be only a 0.00695 
probability of obtaining a sample mean as high as x  = 11.2 with an SRS of 500 students. 
 
 
Exercise 6.57   The following table gives the DRP scores for a sample of 44 third grade students in a 
certain district.  It is known that σ  = 11 for all such scores in the district.  A researcher believes that the 
mean score of all third graders in this district is higher than the national mean of 32.  State the appropriate 

0H  and aH , then conduct the test and give the P-value. 
 

40 26 39 14 42 18 25 43 46 27 19 
47 19 26 35 34 15 44 40 38 31 46 
52 25 35 35 33 29 34 41 49 28 52 
47 35 48 22 33 41 51 27 14 54 45 

 
Solution.  Here would should test 0 : 32H µ =  with a one-sided alternative : 32aH µ > .  Enter the data 
into a list, say list L1, then call up the Z–Test screen and adjust the Inpt to Data.  Enter the values 0µ  = 
32 and σ  = 11, set the list to L1 with frequencies 1, and set the alternative to > 0µ .  Then press ENTER 
on Calculate or Draw. 
 

    
Enter data. Adjust Z-Test screen. Calculate output. Draw output. 

 
       We obtain a P-value of 0.0311686.  If the average of the district were equal to 32, then there would 
be only a 3.117% chance of a sample group of 44 averaging as high as x  = 35.09.  There is strong 
evidence to reject 0H  and conclude that the district’s average is higher than 32. 
 
 
Exercise 6.71  The readings of 12 radon detectors that were exposed to 105 pCi/l of radon are given 
below.  Assume that σ  = 9 for all detectors exposed to such levels. 
 

  91.9 97.8 111.4 122.3 105.4   95.0 
103.8 99.6   96.6 119.3 104.8 101.7 

 
(a)  Give a 95% confidence interval for the mean reading µ  for this type of detector.   
(b)  Is there significant evidence at the 5% level to conclude that the mean reading differs from the true 
value of 105?  State hypotheses and base a test on the confidence interval from (a). 
 
Solution.  (a)  We first enter the data into a list, say list 
L2.  Then we compute the confidence interval with the 
ZInterval feature from the STAT TESTS menu.   
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(b)  We now test 0 : 480H µ =  versus : 105aH µ ≠ .  Because the value of 105 falls within the 95% 
confidence interval (99.041, 109.23) calculated in part (a), we do not have significant evidence at the 5% 
level to reject the hypothesis that µ  = 105. 
 
 
6.3   Use and Abuse of Tests 
 
We continue with two more exercises that illustrate how one must be careful in drawing conclusions of 
significance. 
 
Exercise 6.82  Suppose that SATM scores vary normally with σ  = 100.  Calculate the P-value for the 
test of 0 : 480H µ = , : 480aH µ >  in each of the following situations: 
(a)  A sample of 100 coached students yielded an average of x  = 483. 
(b)  A sample of 1000 coached students yielded an average of x  = 483. 
(c)  A sample of 10,000 coached students yielded an average of x  = 483. 
 
 
Exercise 6.84   For the same hypothesis test as in Exercise 6.82, consider the sample mean of 100 
coached students.  (a)  Is x  = 496.4 significant at the 5% level?  (b)  Is x  = 496.5 significant at the 5% 
level? 
 
 
Solutions.  For Exercise 6.82, we adjust the settings in the Z–Test screen from the STAT TESTS menu 
and calculate.  Below are the results using the three different sample sizes: 
 

                
 

       We see that the rise in average to x  = 483 is significant (P very small) only when the results stem 
from the very large sample of 10,000 coached students.  With the sample of only 100 students, there is 
38.2% chance of obtaining a sample mean as high as x  = 483, even if the true mean were still 480. 
 
       For  Exercise 6.84, we perform the Z–Test for both values of x : 
 

                
 
       In the first case, P = 0.0505 > 0.05; so the value of x  = 496.4 is not significant at the 5% level.  
However, in the second case, P = 0.04947 < 0.05; so the value of x  = 496.5 is significant at the 5% level.  
However, for SATM scores, there is no real “significant” difference between means of 496.4 and 496.5. 
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6.4   Power and Inference as a Decision 
 
We conclude this chapter with some exercises on computing the power against an alternative. 

 
 
Exercise 6.97  Consider the hypotheses 0 : 100H µ = , : 450aH µ >  at the 1% level of significance.  A 
sample of size n = 500 is taken from a normal population having σ  = 100.   Find the power of this test 
against the alternative µ  = 462.   
 
Solution.  We first find the rejection region of the test at the 1% level of significance.  Because the 
alternative is the one-sided right tail, we wish the right-tail probability under the standard normal curve to 
be 0.01.  This probability occurs at z* = 2.326.  So we reject 0H  if the z test statistic is more than 2.326.  
That is, we reject if 

450 2.326
100 / 500

x −
>

450 2.326
100 / 500

x −
>  

 
or equivalently if 

450 2.326 100 / 500 460.4022x > + × = 450 2.326 100 / 500 460.4022x > + × = .  Now we must 
find the probability that x  is greater than 460.4022, given that the alternative µ  = 462 is true. 

       Given that µ  = 462, then (462,100 / 500)x N∼ , and we must 
compute ( 460.4022)P x > .  To do so, we enter the command 
normalcdf(460.4022, 1E99, 462, 100/√(500)) and find that the power against 
the alternative µ  = 462 is about 0.64.  

 
Exercise 6.94  (a)  An SRS of size 584 is taken from a population having σ  = 58 to test the hypothesis 

0 : 100H µ =  versus a two-sided alternative at the 5% level of significance.  Find the power against the 
alternative µ  = 99.   
 
Solution.  Again, we first must find the rejection regions.  For a two-sided alternative at the 5% level of 
significance, we allow 2.5% at each tail.  Thus, we reject if the z test statistic is beyond ± 1.96.  That is, 
we reject if 

100 -1001.96 or 1.96
58 / 584 58 / 284

x x−
< − >

100 -1001.96 or 1.96
58 / 584 58 / 284

x x−
< − >  

 
       Equivalently, we reject if x  < 95.2959 or if x  > 104.7041.  Now assuming that µ  = 99, then x  

~ (99,58 / 584)N .  We now must compute ( 95.2959) ( 104.7041)P x P x< + > , which is equivalent 

to 1 (95.2959 104.7041)P x− ≤ ≤ 1 (95.2959 104.7041)P x− ≤ ≤  = 1 – normalcdf(95.2959, 
104.7041, 99, 58/√(584)).  With this command, we see that the power against the alternative µ  = 99 is 
about 0.07. 
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       We also could use a program to compute the power against an alternative.  In so doing, the results 
should be more accurate because they will avoid round-off errors in the calculations.   
 

The ZPOWER Program 
 

PROGRAM:ZPOWER 
:Menu("ZPOWER","ALT. <", 1,    
 "ALT. >",2,"ALT. ≠ ",3,"QUIT",4) 
:Lbl 1 
:1→C 
:Goto 5 
:Lbl 2 
:2→C 
:Goto 5 
:Lbl 3 
:3→C 
:Goto 5 
:Lbl 4 
:Stop 
:Lbl 5 
:Disp "TEST MEAN" 
:Input M 
:Disp "LEVEL OF SIG." 
:Input A 
:Disp "STANDARD DEV." 
:Input S 
:Disp "SAMPLE SIZE" 
:Input N 

 
:Disp "ALTERNATIVE" 
:Input H 
:If C=1 
:Then 
:invNorm(A,0,1)→Z 
:normalcdf(–1E99, M+Z*S/_(N),  
 H,S/_(N))→P 
:Else 
:If C=2 
:Then 
:invNorm(1-A,0,1)→Z 
:normalcdf(M+Z*S/_(N),1E99, 
 H,S/  (N))→P 
:Else 
:invNorm(1-A/2,0,1)→Z 
:1-normalcdf(M-Z*S/  (N), 
 M+Z*S/  (N),H,S/  (N))→P 
:End 
:End 
:ClrHome 
:Disp "POWER" 
:Disp P 

 
 
       Here are the results of Exercises 6.97 and 6.94 when using the ZPOWER program.  
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7.1   Inference for the Mean of a Population 
 
We begin with a short program that allows us to find a critical value t* upon specifying the degrees of 
freedom and confidence level. 
 

The TSCORE Program 
 

PROGRAM:TSCORE 
:Disp "DEG. OF FREEDOM" 
:Input M 
:Disp "CONF. LEVEL" 
:Input R 

 
:"tcdf(0,X,M)"→Y1 
:solve(Y1-R/2,X,2)→Q 
:Disp "T SCORE" 
:Disp round(Q,3) 

 
 
Exercise 7.18  Find the critical values t* for confidence intervals for the mean in the following cases:   
 
(a)  A 95% confidence interval based on n = 20 observations 
(b)  A 90% confidence interval from an SRS of 30 observations 
(c)  An 80% confidence interval from a sample of size 50 
 
Solution.  The confidence intervals are based on t distributions with n – 1 degrees of freedom.  So we 
need 19 degrees of freedom for part (a), 29 degrees of freedom for part (b), and 49 degrees of freedom for 
part (c).  Below are the outputs of the TSCORE program for each part. 
 

                      
 
 

One-sample t Confidence Interval 
 
We now examine confidence intervals for one mean for which we will use the TInterval feature (item 8) 
from the STAT TESTS menu.  As with the ZInterval feature that we used in Chapter 6, we can enter the 
summary statistics or use data in a list. 
 
 
Example 7.1  The amount of vitamin C in a factory’s production of corn soy blend (CSB) is measured 
from 8 samples giving x  = 22.50 (mg/100 g) and s = 7.19.  Find a 95% confidence interval for the mean 
vitamin C content of the CSB produced during this run. 
 
Solution.  Call up the TInterval feature from the STAT 
TESTS menu.  Set the Inpt to Stats, then enter the 
values of x , Sx, n, C–Level, and press ENTER on 
Calculate.  We obtain the interval 16.489 to 28.511. 
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Exercise 7.6  Here are the values of the fuel efficiency in mpg for a sample of trials on a vehicle 
undergoing testing.  Find the mean, the standard deviation, the standard error, the margin of error for a 
95% confidence interval, and give a 95% confidence interval for the mean mpg of this vehicle. 
 

15.8 13.6 15.6 19.1 22.4 15.6 22.5 17.2 19.4 22.6 
19.4 18.0 14.6 18.7 21.0 14.8 22.6 21.5 14.3 20.9 

 
 
Solution.  First, enter the data into a list, say list L1.  Next, bring up the TInterval screen, set the Inpt to 
Data, set the List to L1 with frequencies 1, enter the desired confidence level, and press ENTER on 
Calculate.  The sample mean, sample deviation, and confidence interval are all displayed. 
 

   
Enter data. Adjust TInterval screen. The confidence interval and 

statistics are displayed. 
 
       Because the confidence interval is of the form x m± , we can find the margin of error m by 
subtracting x  from the right endpoint of the interval:  19.938 18.48 1.458m = − = .  The standard error 
is given by / 3.115766358 / 20 0.6967s n = ≈ .  
 
 

One-sample t test 
 
We now perform some significance tests about the mean using the T–Test feature (item 2) from the 
STAT TESTS menu. 
 
Example 7.3  Using the vitamin C data of n = 8, x  = 22.50, and s = 7.19 from Example 7.1, test the 
hypothesis 0 : 40H µ =  versus the alternative : 40aH µ < . 
 
Solution.  Bring up the T–Test screen from the STAT TESTS menu and adjust the Inpt to STATS.  
Enter the value of 0µ  = 40 and the summary statistics, set the alternative to < 0µ , then scroll down to 
Calculate and press ENTER. 
 

   
STAT TESTS menu Adjust T-Test screen. Calculate output 

 
       We obtain a t test statistic of −6.88 and a P-value of 0.0001173.  Because the P-value is so small, we 
have significant evidence to reject 0H .  For if the true mean were 40, then there would be only a 
0.0001173 probability of obtaining a sample mean as low as x  = 22.5 with a sample of size 8. 
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Example 7.4  The following table gives the monthly percentage rates of return on a portfolio.  Use the 
data to test the hypothesis 0 : 0.95H µ =  versus the alternative : 0.95aH µ ≠ . 
 

–8.36   1.63 –2.27 –2.93 –2.70 –2.93 –9.14 –2.64 
  6.82 –2.35 –3.58   6.13   7.00   –15.25 –8.66 –1.03 
–9.16 –1.25 –1.22   –10.27 –5.11 –0.80 –1.44   1.28 
–0.65   4.34 12.22 –7.21 –0.09   7.34   5.04 –7.24 
–2.14 –1.01 –1.41 12.03 –2.56   4.33  2.35  

 
Solution.  Enter the data into a list, say list L2, then bring up the T–Test screen and adjust the Inpt to 
Data.  Enter the value of 0µ  = .95, set the list to L2 with frequencies 1, and set the alternative to ≠ 0µ .  
Then press ENTER on Calculate or Draw. 
 

    
Enter data. Adjust T-Test screen. Calculate output. Draw output. 

 
       We obtain a P-value of 0.0391.  If the average return were equal to 0.95%, then there would be only a 
3.91% chance of a sample of 39 months averaging as far way as x  = –1.1%.  There is sufficient evidence 
to reject 0H  and conclude that the mean monthly return differs from 0.95%. 
 

Matched Pair t  Procedure 
 
Exercise 7.27  Two operators of X-ray machinery measured the same eight subjects for total body bone 
mineral content.  Here are the results in grams: 
 

 Subject 
Operator 1 2 3 4 5 6 7 8 

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286 
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304 

 
       Use a significance test to examine the null hypothesis that the two operators have the same mean.  
Use a 95% a confidence interval to provide a range of differences that are compatible with these data. 
 
Solution.  We consider the average Dµ  of the difference of the measurements between the operators.  
First, enter the measurements of Operator 1 into list L1 and the measurements of Operator 2 into list L2.  
Next, use the command L1–L2→L3 to enter the differences into list L3.  Then, use a T–Test on list L3 
to test 0 : 0DH µ =  versus the alternative : 0a DH µ ≠ .  
 

    
Enter data. Store differences. Apply T–Test. Calculate output. 
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       We obtain a P-value of 0.7387 from a test statistic of t = –0.347.  Due to the high P-value, we can say 
that there is not a significant average difference.  For if Dµ  were equal to 0, then there would be a 

73.87% chance of having an average difference as far away as d  = –0.0015 with a random sample of 8 
subjects.   
 
       Next, use the TInterval on list L3 to find a 95% 
confidence interval for the average difference.  Because 
the interval (–0.0117, 0.00872) contains 0, 
we have further evidence that the operators could have 
the same mean.    

 
 
 

The Power of the t test 
 
As in Section 6.4, we also can compute the power of a t test against an alternative.  Below we work an 
example “by hand” and with a program. 
 
Example 7.9  Consider the hypothesis test 0 : 0H µ = , : 0aH µ > , with α  = 0.05 .  Taking s = 2.5 and 
σ  = 3, find the power against the alternative µ  = 1.6 for a sample of size n = 20. 
 
Solution.  We first find the rejection region of the test at the 5% level of significance.  For this one-sided 
alternative, we have 5% probability at the right tail, which corresponds to the critical values t* of a 90% 
confidence interval using the t(In– 1) = t(19) distribution.   
 
       Using the TSCORE program, we find that the t* value is 1.729.  Thus, we 

reject 0H  if 
0

2.5 / 20
x −

 > 1.729, which means that we reject 0H  if x  > 

0.96654.   
        
       We now must compute the probability that x  falls in this rejection region, given that the alternative 
µ  = 1.6 is true.  Now given that µ  = 1.6 and σ  = 3, then x ~ (1.6,3 / 20) (1.6,0.67082)N N= .  
Using this distribution, we must compute ( 0.96654)P x > .  
 
       For this calculation, we use the built-in normalcdf( command from the 
DISTR menu and enter normalcdf(.96654, 1E99, 1.6, .67082).  We see that the 
power against the alternative µ  = 1.6 is 0.8275.  If µ  = 1.6, and σ = 3, then 
we are 82.75% likely to reject 0H . 

 
        
       Below are the results from using the TPOWER program provided on the next page. 
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The TPOWER Program 
 

PROGRAM:TPOWER 
:Menu("TPOWER","ALT.<",1, 
 "ALT. >",2,"ALT. ≠ ",3,"QUIT",4) 
:Lbl 1 
:1→C 
:Goto 5 
:Lbl 2 
:2→C 
:Goto 5 
:Lbl 3 
:3→C 
:Goto 5 
:Lbl 4 
:Stop 
:Lbl 5 
:Disp "TEST MEAN" 
:Input M 
:Disp "LEVEL OF SIG." 
:Input A 
:Disp "SAMPLE DEV." 
:Input S 
:Disp "TRUE ST. DEV." 
:Input T 
:Disp "SAMPLE SIZE" 

:Input N 
:Disp "ALTERNATIVE" 
:Input H 
:"tcdf(0,X,N-1)"→Y1 
:If C=1 
:Then 
:solve(Y1-(0.5-A),X,2)→Q 
:normalcdf(–1E99,M-Q*S/  (N),  
 H,T/ (N))→P 
:Else 
:If C=2 
:Then 
:solve(Y1-(0.5-A),X,2)→Q 
:normalcdf(M+Q*S/ (N),1E99, 
 H,T/ (N))→P 
:Else 
:solve(Y1-(0.5-A/2),X,2)→Q 
:1-normalcdf(MQ*S/ (N), 
 M+Q*S/ (N),H,T/ (N))→P 
:End 
:End 
:ClrHome 
:Disp "POWER" 
:Disp P 

 
 

The Sign Test 
 
Example 7.12  Out of 15 patients, 14 had more aggressive behavior on moon days than on other days.  
Use the sign test on the hypothesis of “no moon effect.” 
 
Solution.  Because so many patients had a change in behavior, we shall test the hypothesis 0H : p = 0.50 
with the alternative aH : p > 0.50. 
       We must compute the probability of there being as many as 14 changes with a (15,0.50)B  
distribution.  Equivalently, we can compute the probability of there being as few as one non-change.  
Thus, we could compute either ( 14) 1 ( 13)P B P B≥ = − ≤  or ( 1)P B ≤ .  To do so, we use the built-in 
binomcdf( command from the DISTR menu.   
       After entering either 1– binomcdf(15, .5, 13) or binomcdf(15, .5, 1), we 
obtain the very low P -value of 0.000488.  If there were no moon effect, then 
there would be almost no chance of having as many as 14 out of 15 showing a 
change.  Therefore, we can reject H 0  in favor of the alternative that the moon 
generally causes more aggressive behavior.  
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7.2   Comparing Two Means 
 
We next consider confidence intervals and significance tests for the difference of means 1 2µ µ−  given 
two normal populations that have unknown standard deviations.  The results are based on independent 
random samples of sizes 1n  and 2n .  For the most accurate results, we can use the 2–SampTInt and 2–
SampTTest features from the STAT TESTS menu. 
       These features require that we specify whether or not we wish to use the pooled sample variance 2

ps .  
We should specify “Yes” only when we assume that the two populations have the same (unknown) 
variance.  In this case, the critical values t* are obtained from the 1 2( 2)t n n+ −  distribution and the 

standard error is 1 21/ 1/ps n n+ .   When we specify “No” for the pooled variance, then the standard 

error is 2 2
1 1 2 2/ /s n s n+  and the degrees of freedom r are given by 

 
22 2

1 2

1 2
2 22 2

1 2

1 1 2 2

1 1
1 1

s s
n n

r
s s

n n n n

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 
       But if the true population standard deviations 1σ  and 2σ  are known, then we should use the 2–
SampZInt and 2–SampZTest features for our calculations. 
 
       We can also use the TWOTCI and TWOTTEST programs that follow in order to calculate the less 
accurate results, where the critical value t* is obtained from the t distribution having degrees of freedom 
that is the smaller of  1n  – 1 and 2n  – 1. 
 
 

The TWOTCI Program 
 

Program:TWOTCI 
:Disp "X SAMPLE SIZE" 
:Input P 
:Disp "XBAR" 
:Input X 
:Disp "X SAMPLE DEV." 
:Input S 
:Disp "Y SAMPLE SIZE" 
:Input Q 
:Disp "YBAR" 
:Input Y 
:Disp "Y SAMPLE DEV." 
:Input T 

:Disp "CONF. LEVEL" 
:Input R 
:min(P-1,Q-1)→N 
:"tcdf(0,X,N)"→Y/ 
:solve(Y1-R/2,X,2)→B 
:B (S2/P+T2/Q)→E 
:ClrHome 
:Disp "DIFF, ERROR" 
:Disp round(X-Y,4) 
:Disp round(E,4) 
:Disp "INTERVAL" 
:Disp round(X-Y-E,4) 
:Disp round(X-Y+E,4) 
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The TWOTTEST Program 
Program:TWOTTEST 
:Menu("TWOTTEST","ALT. <",1,"ALT. >",2, 
  "ALT. ≠ ",3,"QUIT",4) 
:Lbl 1 
:1→C 
:Goto 5 
:Lbl 2 
:2→C 
:Goto 5 
:Lbl 3 
:3→C 
:Goto 5 
:Lbl 4 
:Stop 
:Lbl 5 
:Disp "X SAMPLE SIZE" 
:Input P 
:Disp "XBAR" 
:Input X 
:Disp "X SAMPLE DEV." 
:Input S 
:Disp "Y SAMPLE SIZE" 
:Input Q 
:Disp "YBAR" 
:Input Y 
:Disp "Y SAMPLE DEV." 

:Input T 
:(X-Y)/ (S2/P+T2/Q)→Z 
:min(P-1,Q-1)→N 
:If Z≥ 0 
:Then 
:0.5-tcdf(0,Z,N)→R 
:1-R→L 
:Else 
:0.5-tcdf(Z,0,N)→L 
:1-L→R 
:End 
:ClrHome 
:Disp "T STAT" 
:Disp Z 
:Disp "P VALUE" 
:If C=1 
:Then 
:Disp L 
:Else 
:If C=2 
:Then 
:Disp R 
:Else 
:Disp 2*min(L,R) 
:End 
:End 

 
Examples 7.14, 7.15  Two groups of students were given a DRP test.  The results are given in the table 
below.  Test the hypothesis 0 1 2:H µ µ=  versus 1 2:aH µ µ> .  Give a 95% confidence interval for 

1 2µ µ− . 
 

Group n  x  s  
Treatment 21 51.48 11.01 

Control 23 41.52 17.15 
 
Solution.  Bring up the 2–SampTTest feature from the STAT TESTS menu, and set the Inpt to Stats.  
Enter the given statistics, set the alternative, and enter No for Pooled.  Then press ENTER on Calculate. 
 

    
Item 4  Enter data. Non-pooled Output 
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       We obtain a P-value of 0.01316 from a test statistic of 2.3119 with 37.85862 degrees of freedom.  If 
the true means were equal, then there would be a very small chance of 1x  being so much larger than 2x  
with samples of these sizes.  We therefore can reject 0H  and conclude that 1 2µ µ> . 
       Alternately, we can use the TWOTTEST program that uses the t  distribution having degrees of 
freedom that is the smaller of 1n  – 1 and 2n  – 1.  The results are shown below. 
 

    
Enter alternative. Enter data. Output 

 
 
       To calculate a confidence interval for 1 2µ µ− , bring up the 2–SampTInt screen (item 0 in the STAT 
TESTS menu), set the Inpt to Stats, enter the given statistics and desired confidence level, and calculate.  
We obtain the interval (1.2375, 18.683). 
 

    
Item 0 Enter data. Output 

 
 
       Below is the confidence interval obtained by executing the TWOTCI program that uses the  t *  
value with the degrees of freedom being the smaller of  1n  – 1 and 2n  – 1. 
 

   
Enter data. Output 

 
   
 
Exercise 7.84.  The Survey of Study Habits and Attitudes was given to first-year students at a private 
college.  The tables below show a random sample of the scores. 
 

Women’s scores 
154 109 137 115 152 140 154 178 101 
103 126 126 137 165 165 129 200 148 

 
Men’s scores 

108 140 114 91 180 115 126 92 169 146 
109 132 75 88 113 151 70 115 187 104 
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(a)  Examine each sample graphically to determine if the use of a t procedure is acceptable. 
(b)  Test the supposition that the mean score for all men is lower than the mean score for all women 
among first-year students at this college. 
(c)  Give a 90% confidence interval for the mean difference between the SSHA scores of male and female 
first-year students at this college. 
 
 
Solution.  (a)  We shall make normal quantile plots of these data.  In the STAT EDIT screen, enter the 
women’s scores into list L1 and the men’s scores into list L2.  Choose an appropriate WINDOW with an 
X range that allows you to see the minimum and maximum of both data sets and a Y range from –3 to 3.   
       In the STAT PLOT screen, adjust the Type settings for both Plot1 and Plot2 to the sixth type for 
normal quantile plot, then graph each plot separately.  The resulting plots appear close enough to linear to 
warrant use of t  procedures. 
 

    
Enter data. Adjust WINDOW. Adjust Plot1. Adjust Plot2. 

              

  
Women’s plot Men’s plot 

 
 
(b)  Next, let 1µ  be the mean SSHA score among all first-year women and let 2µ  be the mean score 
among all first-year men.  We shall test the hypothesis 0 1 2:H µ µ=  versus the alternative 1 2:aH µ µ> .  
In the 2–SampTTest screen, set the Inpt to Data, enter the desired lists L1 and L2, set the alternative to 

2µ> , enter No for Pooled, and press ENTER on Calculate or Draw. 
 

   
Adjust 2–SampTTest. Calculate output. Draw output. 

 
       We obtain a P-value of 0.02358.  If the true means were equal, then there would be only a 2.358% 
chance of 1x  being so much larger than 2x  with samples of these sizes.  The relatively low P-value gives 
us evidence to reject 0H  and conclude that 1 2µ µ> . That is, the mean score for all men is lower than the 
mean score for all women among first-year students at this college. 
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(c)  Adjust the settings in the 2–SampTInt screen and 
calculate.  We obtain (3.5377, 36.073). That is, the 
mean score of female first-year students should be from 
about 3.5377 points higher to about 36.073 points 
higher than the mean score of male first-year students at 
this college. 

   

 
Pooled Two-sample t Procedures 

 
Exercise 7.83  Here are the summary results on hemoglobin levels at 12 months of age for two samples of 
infants:  
 

Group n  x  s  
Breast-fed 23 13.3 1.7 
Formula 19 12.4 1.8 

 
(a)  Is there significant evidence that the mean hemoglobin level is higher among breast-fed babies?  State 

0H  and aH , and carry out a t test.  
(b)  Give a 95% confidence interval for the difference in mean hemoglobin levels between the two 
populations of infants. 
 
Solution.  Let 1µ  be the mean hemoglobin level for all breast-fed babies and let 2µ  be the mean level for 
all formula-fed babies.  Because the sample deviations are so close, it appears that true standard 
deviations among the two groups could be equal; thus, we may use the pooled two-sample t  procedures.  
For part (a), we will test 0 1 2:H µ µ=  versus 1 2:aH µ µ> . 
 
       Call up the 2–SampTTest feature, and set the Inpt 
to Stats.  Enter the given statistics, set the alternative, 
enter Yes for Pooled, and calculate.  

   
 
       With a P-value of 0.052, we conclude that there is not statistical evidence (at the 5% level) to reject 

0H .  If the true means were equal, then there is greater than a 5% chance of 1x  being 0.9 higher than 2x  
with samples of these sizes. 
 
(b)  Next, calculate a 95% confidence interval with the 2–SampTInt feature set 
to Yes on Pooled.  We see that 1 20.1938 1.9938µ µ− ≤ − ≤ .  That is, the mean 
level of breast-fed babies could be from 0.1938 lower to 1.9938 higher than the 
mean level of formula-fed babies. 

 
 
7.3   Optional Topics in Comparing Distributions 
 
We now demonstrate a test for determining whether or not two normal populations have the same 
variance.  If so, then we would be justified in using the pooled two-sample t procedures for confidence 
intervals and significance tests about the difference in means.  For the test, we will need the 2–
SampFTest feature (item D) from the STAT TESTS menu. 
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The F Ratio Test 
 

Exercise 7.101  Consider again the data from Exercise 7.84 regarding the SSHA scores of first-year 
students at a private college.  Test whether the women’s scores are less variable. 
 

Women’s scores 
154 109 137 115 152 140 154 178 101 
103 126 126 137 165 165 129 200 148 

 
Men’s scores 

108 140 114 91 180 115 126 92 169 146 
109 132 75 88 113 151 70 115 187 104 

 
 
Solution.  Let 1σ  be the standard deviation of all women’s scores and let 2σ  be the standard deviation for 
all men’s scores.  We shall test 0 1 2:H σ σ=  versus 

1 2:aH σ σ< .  To do so, first enter the data sets into 
lists, say L1 and L2.  Next, bring up the 2–SampFTest screen from the STAT TESTS menu, set the Inpt 
to Data, enter the appropriate lists and alternative, and calculate. 
 

    
Enter data. Item D Adjust settings. Output 

              
       With a P -value of 0.18624, we do not have strong evidence to reject 

0H .  If 1σ  were equal to 2σ , 
then there would be an 18.6% chance of the women’s sample deviation of Sx1 = 26.4363 being so much 
lower than the men’s sample deviation of Sx2 = 32.8519.  Thus, we cannot assert strongly that the 
women’s scores are less variable. 
 
Example 7.22   Here are the summary statistics for drop in blood pressure among two sample groups of 
patients undergoing treatment.  Test to see if the groups in general have the same standard deviation. 
 

Group n  x  s  
Calcium 10   5.000 8.743 
Placebo 11 –0.273 5.901 

 
Solution.  Let 1σ  be the standard deviation of all possible patients in the calcium group, and let 2σ  be the 
standard deviation of all possible patients in the placebo group.  We will test the hypothesis 

0 1 2:H σ σ=  
versus 

1 2:aH σ σ≠ .  Bring up the 2–SampFTest screen and set the Inpt to Stats.  Enter the summary 
statistics and alternative, then calculate. 
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       We obtain an F-statistic of 2.195 and a P-value of 0.2365479.  If 1σ  were equal to 2σ , then there 
would be about a 23.6% chance of Sx1 and Sx2 being so far apart with samples of these sizes.  This 
evidence may not be significant enough to reject 

0H  in favor of the alternative. 
 
 

The Power of the Two-Sample t test 
 
We conclude this chapter with a program that gives a standard normal approximation of the power of the 
pooled two-sample t test. 
 
 

The POWER2T Program 
 

PROGRAM:POWER2T 
:Disp "ALT. MEAN DIFF." 
:Input L 
:Disp "1ST SAMPLE SIZE" 
:Input N 
:Disp "2ND SAMPLE SIZE" 
:Input M 
:Disp "LEVEL OF SIG." 
:Input A 
:Disp "COMMON ST. DEV" 

:Input S 
:0.5-A→R 
:N+M-2→F 
:"tcdf(0,X,F)"→Y1 
:solve(Y1-R,X,2)→Q 
:abs(L)/S/ (1/N+1/M)→D 
:0.5-normalcdf(0,Q-D,0,1)→P 
:ClrHome 
:Disp "POWER" 
:Disp round(P,4) 

 
 
 
Example 7.23  Find a normal approximation of the power of the two-sample t test with the following 
design:  An alternative difference of 1 2 5µ µ− = 1 2 5µ µ− = , samples of sizes 1n  = 2n  = 45, a level of 
significance of α  = 0.01, and an assumed common standard deviation of 7.4. 
 
 
Solution. Simply execute the POWER2T program to obtain the normal approximation of the power as 
0.7983. 
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Introduction  
 
In this chapter, we discuss how to use the TI-83 Plus to find confidence intervals and to conduct 
hypothesis tests for a single proportion and for the difference in two population proportions.  The 
confidence intervals will be computed both with provided programs and with the built-in 1–PropZInt 
and 2–PropZInt features. 
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8.1   Inference for a Single Proportion 
 
Both the large-sample and plus-four level C confidence intervals can be 
calculated using the 1–PropZInt feature (item A) from the STAT TESTS 
menu.  Significance tests can be worked using the 1–PropZTest (item 5). 

 
 

Large-Sample Confidence Interval 
 
Example 8.5  In restaurant worker survey, 68 of a sample of 100 employees agreed that work stress had a 
negative impact on their personal lives.  Find a 95% confidence interval for the true proportion of 
restaurant employees who agree. 
 
Solution.  Bring up the 1–PropZInt screen, enter 68 for 
x, enter 100 for n, and enter .95 for C–Level. Then 
press enter on Calculate to obtain a 95% confidence 
interval of (0.58857, 0.77143). 

   
 
 

Plus-Four Confidence Interval 
 
Example 8.2  In a preliminary sample of 12 female subjects, it was found that 4 were equol producers.  
Find a 95% confidence interval for the true proportion of females who are equol producers. 
 
Solution.  In the 1–PropZInt screen, enter 6 for x, 
which is 2 more than the actual number of “Yes,”   and 
enter 26 for n, which is 4 more than the actual sample 
size.  Enter the desired C–level and press ENTER on 
Calculate to obtain the plus-four estimate p̂  = 0.375 
and the confidence interval. 

   

 
 

Choosing a Sample Size 
 
As with confidence intervals for the mean, we often would like to know in advance what sample size 
would provide a certain maximum margin of error m with a certain level of confidence.  The required 
sample size n satisfies 
 

2* *(1 *)zn p p
m

⎛ ⎞≥ −⎜ ⎟
⎝ ⎠

 

 
where z*  is the appropriate critical value depending on the level of confidence and p* is a guessed value 
of the true proportion p.  If p* = 0.50, then the resulting sample size insures that the margin of error is no 
more than m, regardless of the true value of p.  
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       The program PSAMPSZE displays the required sample size, rounded up to the nearest integer, after 
one enters the desired error m, the confidence level, and the guess p*. 
 

The PSAMPSZE Program 
 

PROGRAM:PSAMPSZE 
:Disp "DESIRED ERROR" 
:Input E 
:Disp "CONF. LEVEL" 
:Input R 
:Disp "GUESS OF P" 
:Input P 
:invNorm((R+1)/2,0,1)→Q 
:(Q/E)2*P(1-P)→M 

:If int(M)=M 
:Then 
:M→N 
:Else 
:int(M+1)→N 
:End 
:ClrHome 
:Disp "SAMPLE SIZE=" 
:Disp int(N) 

 
 
Exercise 8.26  Among students who completed an alcohol awareness program, you want to estimate the 
proportion who state that their behavior towards alcohol has changed since the program.  Using the 
guessed value of p* = 0.30 from previous surveys, find the sample size required to obtain a 95% 
confidence interval with a maximum margin of error of  = 0.10. 
 
Solution.  Executing the PSAMPSZE program, we find 
that an sample of size 81 would be required.  This value 
also can be obtained by  
 

2(1.96 / 0.10) 0.30 0.70 80.6736n = × × =    
 

Significance Tests 
 

We now show how to conduct hypothesis tests for a single population proportion p using the 1–
PropZTest feature (item 5) in the STAT TESTS menu. 
 
 
Example 8.3   In the restaurant worker survey, 68 of a sample of 100 employees agreed that work stress 
had a negative impact on their personal lives.  Let p be the true proportion of restaurant employees who 
agree.  Test the hypothesis 0H : p = 0.75 versus aH : p ≠  0.75.   
 
Solution.  Enter the data and alternative into the 1–PropZTest screen, then press enter on Calculate or 
Draw.  We obtain a (two-sided) P-value of 0.106 from a z-statistic of –1.61658.  If p were equal to 0.75, 
then there would be a 10.6% chance of obtaining p̂  as far away as 0.68 with a sample of size 100.  
 

   
Item 5 Enter data. Calculate output.Draw output. 
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Exercise 8.22  In a taste test of instant versus fresh-brewed coffee, only 12 out of 40 subjects preferred 
the instant coffee.  Let p be the true probability that a random person prefers the instant coffee.  Test the 
claim 0H : p = 0.50 versus aH : p < 0.50 at the 5% level of significance.     
 
Solution.  Enter the data and alternative into the 1–
PropZTest screen and calculate.  We obtain a test 
statistic of –2.53 and a P-value of 0.0057.  If p were 
0.50, then there would be only a 0.0057 probability of 
p̂  being as low as 0.3 with 40 subjects.  There is strong 

evidence to reject 0H . 

 

  
 
 
8.2   Comparing Two Proportions 
 
We now demonstrate confidence intervals and significance tests for the 
difference of two population proportions 1p  and 2p .  These calculations can be 
made with the 2–PropZInt (item B) and 2–PropZTest (item 5) features from 
the STAT TESTS menu.  

 
 
 

Large-Sample Confidence Interval for Difference of Proportions 
 
Example 8.9  The table below gives the sample sizes and numbers of men and women who responded 
“Yes” to being frequent binge drinkers in a survey of college students.  Find a 95% confidence interval 
for the difference between the proportions of men and women who are frequent binge drinkers. 
 

Population n  X  
Men 7180 1630 

Women 9916 1684 
 
 
Solution.  In the 2–PropZInt screen, enter 1630 for x1, 7180 for n1, 1684 for x2, and 9916 for n2.  Set 
the confidence level to .95 and press ENTER on Calculate. 
 

           
 

       We obtain a confidence interval of (0.045, 0.069).  That is, the proportion of male binge drinkers is 
from 4.5 percentage points higher to 6.9 percentage points higher than the proportion of female binge 
drinkers. 
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Plus–Four Confidence Interval for Difference of Proportions 
 
Example 8.10  A study of 12 boys and 12 girls found that four of the boys and three of the girls had a 
Tanner score of 4 or 5.  Find a plus-four 95% confidence interval for the difference in proportions of all 
boys and all girls who would score a 4 or 5. 
 
Solution.  We can still use the 2–PropZInt feature to find a plus-four confidence interval for 1 2p p− .  
But for x1 and x2, enter 1 more than the actual number of positive responses.  For n1 and n2, enter 2 
more than the actual sample sizes.  Here, enter 5 for x1, 4 for x2, and enter 14 for both n1 and n2. Then, 
set the confidence level to .95 and calculate. 
 
       We see that  1 20.2735 0.4164p p− ≤ − ≤ .  That 
is, the true proportion of boys who score 4 or 5 is from 
27.35 percentage points lower to 41.64 percentage 
points higher than the true proportion of girls who score 
4 or 5.      

        
 

Significance Tests for Difference of Proportions 
 
We now show how to conduct hypothesis tests about 1 2p p−  using the 2–PropZTest feature (item 6) 
from the STAT TESTS menu. 
 
 
Example 8.11  The table below gives the sample sizes and numbers of men and women who responded 
“Yes” to being frequent binge drinkers in a survey of college students.  Does the data give good evidence 
that the true proportions of male binge drinkers and female binge drinkers are different? 
 

Population n  X  
Men 7180 1630 

Women 9916 1684 
 
Solution.  Let 1p  be the true proportion of male students who are frequent binge drinkers, and let 2p  be 
the true proportion of female students who are frequent binge drinkers.  We shall test the hypothesis 0H : 

1p  = 2p  versus the alternative aH : 1p  ≠  2p .  Bring up the 2–PropZTest screen, enter the actual data 
and the two-sided alternative, then calculate. 
 

   
Item 6 Enter data. Calculate output. 

 
       We obtain a P-value of 201.0112 10−× (essentially 0) from a test statistic of z = 9.33658.  If 1p  = 2p  
were true, then there would be no chance of obtaining sample proportions as far apart as 1p̂  = 0.227 and 

2p̂  = 0.1698 with samples of these sizes.  So, we can reject  0H .   
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Exercise 8.51  The table below gives the results of a gender bias analysis of a textbook.  Do the data give 
evidence that the proportion of juvenile female references is higher than the proportion of juvenile male 
references?  Compare the results with those of a 90% confidence interval. 
 

Gender n  X  (juvenile) 
Female 60 48 
Male 132 52 

 
 
Solution.  Let 1p  be the true proportion of juvenile female references in all such texts, and let 2p  be the 
true proportion of juvenile male references.  We will test the hypothesis 0H : 1 2p p=  versus aH : 1p  > 

2p .  Bring up the 2–PropZTest screen, enter the data, set the alternative to > 2p , and calculate.  Then 
bring up the 2–PropZInt screen, and calculate a 90% confidence interval. 
 

    
Adjust 2–PropZTest. Output Adjust 2–PropZInt. Output 

 
       We obtain a very low P-value of 88.94 10−× 88.94 10−× , which gives strong evidence to reject 0H .  

If 1 2p p=  were true, then there would be almost no chance of obtaining a 1p̂  that is so much higher than 

2p̂  with samples of these sizes. 
       The 90% confidence interval states that 1 20.296 0.5161p p≤ − ≤ 1 20.296 0.5161p p≤ − ≤ .  That 
is, among all such texts, the proportion of juvenile female references is from 29.6 percentage points 
higher to 51.61 percentage points higher than the proportion of juvenile male references. 
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Introduction 
 
In this chapter, we describe how to use the TI-83 Plus to perform a chi-square test on data from a two-
way table.  We shall be testing whether there is any association between the row variable traits and the 
column variable traits, or whether these row and column traits are independent. 
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9.1   Data Analysis for Two-Way Tables 
 
We first provide a program that converts a two-way table of raw data into three different proportion 
tables.     
 

The TWOWAY Program 
 

PROGRAM:TWOWAY 
:Disp "NO. OF ROWS" 
:Input R 
:Disp "NO. OF COLUMNS" 
:Input C 
:{R+1,C+1}→dim([B]) 
:0→N 
:For(I,1,R) 
:N+sum(seq([A](I,J),J,1,C))→N 
:End 
:For(I,1,R) 
:For(J,1,C) 
:round([A](I,J)/N,4)→[B](I,J) 
:End 
:End 
:For(I,1,R) 
:round(sum(seq([A](I,J),J,1,C)) 
 /N,4)→[B](I,C+1) 
:End 
:For(J,1,C) 
:round(sum(seq([A](I,J),I,1,R)) 
 /N,4)→[B](R+1,J) 
:End 

:1→[B](R+1,C+1) 
:{R+1,C}→dim([C]) 
:For(J,1,C) 
:sum(seq([A](I,J),I,1,R))→A 
:For(I,1,R) 
:round([A](I,J)/A,4)→[C](I,J) 
:End 
:1→[C](R+1,J) 
:End 
:{R,C+1}→dim([D]) 
:For(I,1,R) 
:sum(seq([A](I,J),J,1,C))→A 
:For(J,1,C) 
:round([A](I,J)/A,4)→[D](I,J) 
:End 
:1→[D](I,C+1) 
:End 
:ClrHome 
:Output(2,1,"JT/MARG: MAT B") 
:Output(4,1,"COND.GIVEN THE    
 COL VAR: MAT C") 
:Output(7,1,"COND.GIVEN THE   
 ROW VAR: MAT D") 

 
       Before executing the program, enter the raw data (excluding totals) into matrix [A] in the MATRX 
EDIT screen.  The program then stores proportion tables into matrices [B], [C], and [D].  Matrix [B] 
gives the joint distribution of overall proportions from the entire sample as well as the marginal 
distributions; matrix [C] gives the conditional distribution given the column variable, and matrix [D] 
gives the conditional distribution given the row variable. 
 
 
Exercise 9.9   Questionnaires were mailed to 300 randomly selected businesses in each of three 
categorical sizes.  The following data show the number of responses.   
 

Size of company Response No response Total 
Small 175 125 300 

Medium 145 155 300 
Large 120 180 300 
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(a)  What was the overall percent of non-response? 
(b)  For each size of company, compute the non-response percentage. 
(c)  Draw a bar graph of the non-response percents. 
(d) Using the total number of responses as a base, compute the percentage of responses that came from 
each size of company. 
 
Solution.  We can compute all three types of percentages with the TWOWAY program.  Not including 
the totals, the data creates a 3 × 2 matrix.  There are 3 rows (sizes of companies) and 2 columns 
(Response and No response).  Before running the program, we must enter this data into matrix [A] in the 
MATRX EDIT screen.  After entering the data, execute the TWOWAY program by entering the 
dimensions of 3 rows and 2 columns when prompted. 
 

    
[A] in MATRX EDIT Enter size 3 ↔2. Enter data. Execute TWOWAY. 

 

    
Output Joint and marginal 

distributions stored in 
matrix [B] 

Percentage of sizes 
given response type  
stored in matrix [C] 

Percentage of 
responses given size 
stored in matrix [D] 

 
(a)  Matrix [B] contains the marginal distribution of response/non-response rates.  From the last row of 
matrix [B], we see that of the 900 questionnaires, 48.89% responded and 51.11% did not respond.  From 
the last column, we see that one-third of the questionnaires went to each of the small, medium, and large 
companies, which is the marginal distribution of company sizes.  
       The inner entries of matrix [B] contain the joint distribution.  For instance, from the second column 
we see that among all 900 questionnaires, 13.89% were small company non-responses, 17.22% were 
medium company non-responses, and 20% were large company non-responses. 
 
(b)  Matrix [D] contains the conditional distribution of responses given type of company size.  From the 
second column in matrix [D], we see that 41.67% of small companies did not respond, which is 125 out 
of 300.  Among medium-sized companies, 51.67% did not respond, which is 155 out of 300.  Among 
large companies, 60% did not respond, which is 180 out of 300. 
 
(d)  Matrix [C] contains the conditional distribution of company size given type of response. From the 
first column in matrix [C], we see that among those that responded, 39.77% were small companies (175 
out of 440), 32.95% were medium-sized companies (145 out of 440), and 27.27% were large companies 
(120 out of 440). 
 
(c)  To make a bar graph of the non-response percents, we first enter the values 0, 1, and 2 into list L1 in 
order to represent the three types of companies, and then enter the non-response proportions from the 
second column of matrix [D] into list L2.  Next, we adjust the WINDOW and STAT PLOT settings for 
a histogram of L1 with frequencies L2, then graph. 
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Enter three categories 

and non-response 
percents. 

Adjust WINDOW. Adjust STAT PLOT. Press GRAPH. 

 
 
9.2   Inference for Two-Way Tables 
 
We continue here with an example that shows how to compute the expected cell counts of a two-way 
table under the hypothesis that there is no association between the row variable and the column variable. 
 

Expected Cell Counts 
 

The TI-83 Plus has a built-in χ2–Test feature (item C in the STAT TESTS menu) that will compute the 
expected counts of a random sample under the assumption that the conditional distributions are the same 
for each category type.  To use this feature, we first must enter data from a two-way table into a matrix in 
the MATRX EDIT screen.  
 

 
Example 9.12  The following table shows the two-way relationship between whether a franchise 
succeeds and whether it has exclusive territory rights for a number of businesses. 
 

Observed number of firms 
             Exclusive territory 

Success Yes No Total 
Yes 108 15 123 
No   34 13   47 

Total 142 28 170 
 
       Under the assumption that there is no relationship between success and exclusive territory rights, find 
the expected number of successful franchises for each type of firm. 
 
Solution.  First, enter the 2×2 table of data (excluding totals) into matrix [A] in the MATRX EDIT 
screen.  Next, bring up the χ2–Test screen from the STAT TESTS menu, and adjust the Observed and 
Expected settings.  To enter matrix [A] for Observed, press MATRX and then press 1.  To enter matrix 
[B] for Expected, press MATRX and then press 2.  Next, press ENTER on Calculate, and compare 
matrix [B] with matrix [A]. 
 

   
Enter data. STAT TESTS Item C Designate matrices. 
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Output MATRX EDIT Observe Matrix [B]. 

 
       If there were no relationship between success and exclusive territory rights, then we would expect 
102.74 successful exclusive-territory franchises and 20.259 successful non-exclusive-territory franchises, 
as shown in the first row of matrix [B].  These values differ slightly from the observed values of 108 and 
15 in the original data. 
       In other words, 123 out of 170, or 72.353%, of all franchises are successful.  So if there is no 
relationship between exclusive rights and success, then 72.353% of each type of franchise should be 
successful.  Therefore, the number of successful exclusive-territory franchises would be (123/170) 142×  
= 102.74. 
       The χ2–Test feature also displays the chi-square test statistic, the P-value, and the degrees of freedom 
for the chi-square test of no association between the row and column variables.  In this case, the low P-
value of 0.015 gives strong evidence to reject the claim that there is no relationship between exclusive 
territory rights and franchise success. 
 

Comparison with the 2–PropZTest 
 
The chi-square test for a 2×2 table is equivalent to the two-sided z test for 0 1 2:H p p=  versus 

1 2:aH p p≠ .  In Example 9.12, we let 1p  be the true proportion of all successful exclusive-territory 
franchises and let 2p  be the true proportion of all successful non-exclusive-territory franchises.  Then 1p̂  
= 108/142 and 2p̂  = 15/28.  If we enter these values into the 2–PropZest screen and use the alternative 
≠ p2, then we obtain the same P-value of 0.015. 
 

   
STAT TESTS item 6 Enter data and  

two-sided alternative. 
P -value is still 0.015. 

 
   
 
9.3   Formulas and Models for Two-Way Tables 
 
In this section, we further explain the test of no association among the row traits and the column traits 
versus the alternative that there is some relation between these traits.   
 
 
Example 9.18  The two-way table that follows shows the types of wine purchased in a Northern Ireland 
supermarket while a certain type of music was being played.  Find the conditional distribution of wine 
given the type of music.  Test whether there is an association between the type of wine purchased and the 
type of music being played. 
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  Music   
Wine None French Italian Total 

French 30 39 30 99 
Italian 11 1 19 31 
Other 43 35 35 113 
Total 84 75 84 243 

Solution.  First, enter the data (excluding totals) into a 3×3 matrix [A] in the MATRX EDIT screen.  
Next, execute the TWOWAY program by entering 3 for both the number of rows and columns.  Then 
observe the conditional distribution of the type of wine given the type of music in matrix [C].  We see 
that the type of music appears to affect the type of wine purchased. 
 

    
Enter data. Execute TWOWAY. Output Observe matrix [C]. 

 
       To see if there is an association, we shall test the null hypothesis 0H  that there is no relation between 
the music and the type of wine purchased.  The alternative is that there is a relation, or that the type of 
wine purchased is dependent upon the music being played. 
       With the data already entered into matrix [A], we can conduct the test with the χ2–Test feature.  We 
designate matrix [A] for Observed, and here we shall designate matrix [E] for Expected. After 
calculating, we obtain a P-value of 0.001 from a test statistic of 18.2792. 

   
Designate matrices. Output Observe matrix [E]. 

 
       If there were no association between the type of wine purchased and the type of music being played, 
then there would be only a 0.001 probability of obtaining observed cell counts that differ so much from 
the expected cell counts shown in matrix [E].  Due to this low P-value, we can reject the null hypothesis 
and say that the type of wine purchased is dependent upon the music being played.   
 
Exercise 9.38  A recent study of 865 college students found that 42.5% had student loans.  The following 
table classifies the students by field of study and whether or not they have a loan.  
 

 Student loan  
Field of study Yes   No 

Agriculture 32   35 
Child development and family studies 37   50 

Engineering 98 137 
Liberal arts and education 89 124 

Management 24   51 
Science 31   29 

Technology 57   71 
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       Carry out an analysis to see if there is a relationship between field of study and having a student loan. 
 
Solution.  We will test to see if the proportion of students having a student loan is the same regardless of 
field of study (i.e., if having a loan is independent of field).  First, we enter the data into a 7×2 matrix [A] 
in the MATRX EDIT screen.  Next, we bring up the  χ2–Test screen and designate [A] for Observed.  
Here we shall use matrix [E] for Expected.  Upon calculating, we obtain a P-value of 0.367 from a test 
statistic of 6.52526. 
 

    
Enter data. Designate matrices. Output Observe matrix [E]. 

 
       If having a loan were independent of field of study (i.e., if all fields had the same proportion of 
students with loans), then there would be a 0.367 probability of obtaining observed cell counts that differ 
so much from the expected cell counts.  Because of the high P-value, we can say that the observed 
differences are due to random chance and are not statistically significant.  Thus, we will not reject the 
hypothesis that having a loan is independent of field of study. 
 
       For further evidence, we can observe the conditional distribution of students having a loan given the 
particular fields of study.  To do so, we can execute the TWOWAY program and view matrix [D].  We 
see that the percentages having a loan are very close in all fields, except perhaps for those in Management 
and those in Science. 
 

   
Execute TWOWAY. Output Observe matrix [D]. 

 
 
9.4   Goodness of Fit 
 
We conclude with a brief program that performs a goodness of fit test for a specified discrete distribution. 
Before executing the FITTEST program that follows, enter the specified proportions into list L1 and 
enter the observed cell counts into list L2.  The expected cell counts are computed and stored in list L3, 
and the individual contributions to the chi-square test statistic are stored in list L4.  The program displays 
the test statistic and the P-value. 
 

The FITTEST Program 
Program:FITTEST 
:1-Var Stats L2 
: ∑ x*L1→L3 
:(L2-L3)2/L3→L4 
:1-Var Stats L4 
: ∑ x→X 

:1-→x2cdf(0,X,n-1)→P 
:ClrHome 
:Disp "CHI SQ STAT" 
:Disp X 
:Disp "P VALUE" 
:Disp P 
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Example 9.24  The following table gives the number of motor vehicle collisions by drivers using a cell 
phone broken down by days of the week over a 14-month period.  Are such accidents equally likely to 
occur on any day of the week? 

 
Number of collisions by day of the week 

Sun. Mon. Tue. Wed. Thu. Fri. Sat. Total 
20 133 126 159 136 113 12 699 

 
 
Solution.  If each day were equally likely, then 1/7 of all accidents should occur on each day.  To test the 
fit of this distribution, we shall use the FITTEST program.  We first enter 1/7 seven times into list L1 to 
specify the expected distribution, and enter the given frequencies from the table into list L2.  Next, we run 
the FITTEST program to obtain a P-value of 0 from a chi-square test statistic of 208.8469.   
 

    
Enter distribution  

and data. 
Execute FITTEST. Output Expected values and 

chi-square terms 
 
       If these accidents were equally likely to occur on any day of the week, then there would be no chance 
of obtaining a sample distribution that differs so much from the expected counts of (1/ 7) 699×  = 99.857 
for each day.  So we can reject the claim that accidents are equally likely on each day.  After the program 
runs, the expected counts are stored in list L3 and the contributions to the chi-square test statistic from 
each day are stored in list L4. 
 
 
Exercise 9.47  At a particular college, 29% of undergraduates are in their first year, 27% in their second, 
25% in their third, and 19% are in their fourth year.  But a random survey found that there were 54, 66, 
56, and 30 students in the first, second, third, and fourth years, respectively.  Use a goodness of fit test to 
examine how well the sample reflects the college’s population. 
 
Solution.  We shall use the FITTEST program to test the goodness of fit.  Before executing the program, 
we enter the stated proportions 0.29, 0.27, 0.25, and 0.19 into list L1 and the obtained frequencies into list 
L2.  Upon running the program, we obtain a P-value of 0.17061 from a chi-square test statistic of 5.016.  
For the given distribution, there is about a 17% chance of obtaining observed sample counts that differ as 
much as these do from the expected counts (stored in list L3). 
 

    
Enter distribution  

and data. 
Execute FITTEST. Output Expected values and 

chi-square terms 
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More Detail about Simple 
Linear Regression 

 
 
Introduction 
 
In this chapter, we provide details on using the TI-83 Plus to perform the many difficult calculations for 
linear regression.  In particular, we again find and graph the least-squares regression line and compute the 
correlation.  We then can perform a t  test to check the hypothesis that the correlation (or, equivalently, 
the regression slope) is equal to 0.  We also provide a program that computes confidence intervals for the 
regression slope and intercept and another program that computes a prediction interval for a future 
observation and a confidence interval for a mean response. 
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10.1   Simple Linear Regression 
 
We begin by demonstrating the LinRegTTest feature (item E) from the STAT 
TESTS menu that will compute a least-squares regression line while 
simultaneously testing the null hypothesis that the regression slope equals 0. 

 
 
Exercise 10.17  Here are data on the net new money (in billions of dollars) flowing into stock and bond 
mutual funds from 1985 to 2000. 
 

 Year 1985 1986 1987 1988 1989 1990 1991 1992 
Stocks   12.8   34.6 28.8 –23.3   8.3 17.1 50.6 97.0 
Bonds 100.8 161.8 10.6   –5.8 –1.4  9.2 74.6 87.1 

 
Year 1993 1994 1995 1996 1997 1999 1999 2000 

Stocks 151.3 133.6 140.1 238.2 243.5 165.9 194.3 309.0 
Bonds   84.6 –72.0   –6.8     3.3   30.0   79.2   –6.2 –48.0 

 
(a)  Make a scatterplot with cash flow into stock funds as the explanatory variable.  Find the least-squares 
line for predicting net bond investments from net stock investments.   
(b)  Is there statistically significant evidence that there is some straight-line relationship between the 
flows of cash into bond funds and stock funds?  State hypotheses, give a test statistic and P-value, and 
state a conclusion. 
 
Solution.  We make a scatterplot as explained in Section 2.1 by entering the data into lists and adjusting 
the WINDOW and STAT PLOT settings. 
 

    
Enter data into lists. Adjust WINDOW. Adjust STAT PLOT. Press GRAPH. 

 
       In Chapter 2, we showed how to compute and graph the least-squares line using the LinReg(a+bx) 
command from the STAT CALC menu.  But now we shall use LinRegTTest feature from STAT 
TESTS menu.  As before, we first should make sure that the DiagnosticOn command has been entered 
from the CATALOG.   
       With the LinRegTTest, we can find the least-squares line while at the same time testing the null 
hypothesis that the slope 1β  is equal to 0.  We will use the alternative hypothesis that 1β  ≠  0.  This test 
is equivalent to testing the null hypothesis that the correlation ρ  is equal to 0 with an alternative that ρ  
≠  0. 
       After bringing up the LinRegTTest screen, adjust the settings for L1 versus L2 (or to whatever lists 
contain the data) and enter the alternative ≠ 0.  To enter Y1 for RegEQ, scroll down to the right of 
RegEQ, press VARS, scroll right to Y–VARS, press 1 for Function and then press 1 for Y1.  Then press 
ENTER on Calculate. 
       We obtain the regression line y = a + bx (or 0 1xy β β= + ), which is also stored into Y1.  Here the 
equation rounds to y = 53.4096 – 0.1962x.  Press GRAPH to see the plot. 
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Adjust LinRegTTest. Output Scroll down. Press GRAPH. 

 
       The P-value for the t test is given as 0.226 from a t statistic of –1.26622.  If 1β  were equal to 0, then 
there would be a 22.6% chance of obtaining a value for b as low as –0.1962, or of obtaining a correlation 
as low as r = –0.32, with a sample of this size.  This rather high P-value means that we do not have 
statistically significant evidence that there is some straight-line relationship between the flows of cash 
into bond funds and stock funds.  In other words, we do not have enough evidence to reject that 1β  = 0 or 
to reject that ρ  = 0. 

 
Confidence Intervals for Slope and Intercept 

 
We now provide a program that will compute confidence intervals for the slope and for the  intercept of 
the linear regression model 0 1xy β β= + .  Before executing the REG1 program below, we must enter 
paired data must into lists L1 and L2.  
 

The REG1 Program 
PROGRAM:REG1 
:Disp "CONF. LEVEL" 
:Input R→ 
:LinRegTTest L1,L2,1 
:"tcdf(0,X,n-2)"→Y2 
:solve(Y2-R/2,X,2)→T 
:s/ (nσx2)→B 
:s  (1/n+ x 2/(nσx2))→A 

 
:ClrHome 
:Disp "INTCPT.INTERVAL" 
:Disp a-TA 
:Disp a+TA 
:Disp "SLOPE INTERVAL" 
:Disp b-TB 
:Disp b+TB 

 
 
Example  Using the data from Exercise 10.17, find 90% confidence intervals for the slope 1β  and the 
intercept 0β  of the linear regression model. 
 
Solution.  After entering the data into lists L1 and L2, 
bring up the REG1 program and enter .90 for CONF. 
LEVEL.  The interval {12.9127, 93.9065} for the 
intercept and the interval {–0.4692, 0.0767} for the 
slope are displayed.    

 
 

Mean Response and Prediction Confidence Intervals 
 
We now provide another program, REG2, which computes a confidence interval for a mean response or a 
prediction interval for an estimated response.  Before this program can be executed, paired data must be 
entered into lists L1 and L2.  
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The REG2 Program  
 

PROGRAM:REG2 
:Disp "1 = MEAN INT.","2 = PRED. INT." 
:Input C 
:If C=1 
:Then 
:Disp "MEAN VALUE OF X?" 
:Input X 
:Else 
:Disp "FUT. VAL. OF X?" 
:Input W 
:End 
:Disp "CONF. LEVEL" 
:Input R 
:LinRegTTest L1,L2,1 
:"tcdf(0,X,n-2)"→Y2 
:solve(Y2-R/2,X,2)→T 

 
:s  (1/n+(X- x )¯/(nσx2))→E 
:s  (1+1/n+(W- x )¯/(nσx2))→D 
:a+bX→Y 
:a+bW→Z 
:ClrHome 
:If C=1 
:Then 
:Disp "MEAN INTERVAL" 
:Disp Y-TE 
:Disp Y+TE 
:Else 
:Disp "PREDICTION INT." 
:Disp Z-TD 
:Disp Z+TD 
:End 

 
 
Example  With the data from Exercise 10.17, find a 90% confidence interval for the mean net bond 
investment for a year with an average of $120 billion net stock investment.  Find a 95% prediction 
interval for a future year with an average of $170 billion net bond investment. 
 
Solution.  If the data have been entered into lists L1 and L2, then we can compute the intervals separately 
by entering either 1 or 2 when prompted in the REG2 program.  For the first interval, first enter 1, then 
120, then the confidence level of .9.  For the prediction interval, first enter 2, then 170, then the 
confidence level of .95.  
 

    
REG2 option 1 Output REG2 option 2 Output 

 
 
Exercise 10.23  The table below gives the amount of lean in tenths of a millimeter in excess of 2.9 meters 
for the Leaning Tower of Pisa from 1975 to 1987.  
 

Year 75 76 77 78 79 80 81 82 83 84 85 86 87 
Lean 642 644 656 667 673 688 696 698 713 717 725 742 757 

 
(a)  Plot the data.   
(b)  What is the equation of the least-squares line?  What percentage of the variation in lean is explained 
by this line? 
(c)  Give a 99% confidence interval for the average rate of change of the lean. 
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Exercise 10.24  Using the least-squares equation from Exercise 10.23, calculate a predicted value for the 
lean in 1918. 
 
Exercise 10.25  Use the least-squares equation from Exercise 10.23 to predict the tower’s lean in the year 
2007.  Give the margin of error for a 99% prediction interval for 2007. 
 
Solutions.  10.23 (a)  Enter the data into lists L1 and L2, set an appropriate window, adjust the STAT 
PLOT settings for a scatterplot, and graph.  The trend in lean appears to be linear in time with a positive 
slope 1β . 
 

    
Enter data. Adjust WINDOW. Adjust STAT PLOT. Press GRAPH. 

 
(b)  We now can find the equation of the least-squares line while at the same time testing the null 
hypothesis 0H : 1β  = 0 (or ρ  = 0), with an alternative aH : 1β  > 0 (or ρ  > 0).  We simply bring up the 
LinRegTTest screen, adjust the list settings and alternative, and calculate. 
 

    
Adjust LinRegTTest. Output Scroll down. Press GRAPH. 

 
       We obtain a least-squares line of y = –61.12 + 9.3187x  with r2 ≈  0.988.  Thus, about 98.8% of the 
variation in lean is explained by this least-squares line.  For the hypothesis test, we obtain a P-value of 

123.25 10 0−× ≈ .  This low value gives strong evidence to reject 0H  and conclude that 1β  > 0 (or ρ  > 
0), which means that there is a positive correlation. 
 
(c)  With the data entered into into lists L1 and L2, we can use the REG1 
program to find a confidence interval for the average rate of change of the lean 
(i.e., for the slope of the least-squares line).  We simply enter .99 for CONF. 
LEVEL in the program, and obtain the interval for the slope as (8.3561, 
10.2812).  

 
10.24:  Because 18 is the coded value for the year 1918, we simply evaluate the least-squares line at 18.  
The LinRegTTest feature has stored the line into function Y1; so we simply retrieve Y1 from the VARS 
Y–VARS FUNCTION screen and evaluate Y1(18) as 106.615. 
 

    
VARS Y–VARS FUNCTION Y1  Enter Y1(18). 
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10:25:  We now use 107 as the coded value for the year 2007.  We first evaluate the predicted lean with 
Y1(107), and then find a 99% prediction interval with option 2 of the REG2 program.   
 

   
Evaluate Y1(107). Execute REG2. Output 

 
       The prediction interval is given as [907.5547, 964.4013].  Because the midpoint of the prediction 
interval equals the value of the regression line evaluated at the specified future value of x = 107, the 
margin of error is found by 935.9780 – 907.5547 = 28.4233. 
 
 
10.2   More Detail about Simple Linear Regression 
 
Analysis of variance (ANOVA) is another method to test the null hypothesis 0H : 1β  = 0, with an 
alternative aH : 1β  ≠  0.  The REG3 program that follows performs such a test, stores an ANOVA table 
into lists L4, L5, and L6, and displays the associated F-statistic and P-value.  Before executing the REG3 
program, we must enter paired data into lists L1 and L2. 
 
Note:  The ANOVA table generated by the REG3 program is not the same one that will be generated by 
the TI-83’s built-in ANOVA( command that is used for testing whether or not several populations have 
identical means.  That command will be explained in Chapter 12. 
 

 
The REG3 Program for Linear Regression ANOVA  

 
PROGRAM:REG3 
:LinReg(a+bx) L1,L2 
:sum(seq((a+bL/(I)- y )2, 
  I,1,dim(L1)))→A 
:sum(seq((RESID(I))2,I,1, 
  dim(L1)))→B 
:sum(seq((L2(I)- y )2, 
  I,1,dim(L/)))→C 
:(n-2)A/B→F 
:1-icdf(0,F,1,n-2)→P 
:ClrList L4,L5,L6 

:1→L4(1):A→L5(1):A→L6(1) 
:n-2→L4(2):B→L5(2):B/(n-2)→L6(2) 
:n-1→L4(3):C→L5(3):C/(n-1)→L6(3) 
:ClrHome 
:Disp "F-STAT, P-VAL" 
:Output(2,2,{round(F,3),round(P,4)}) 
:Output(4,1,"SEE L4, L5, L6") 
:Output(5,5,"DF, SS, MS") 
:Output(6,3,"M") 
:Output(7,3,"E") 
:Output(8,3,"T") 
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Example  Consider the data from Exercise 10.17 on the net new money (in billions of dollars) flowing 
into stock and bond mutual funds from 1985 to 2000. 
 

 Year 1985 1986 1987 1988 1989 1990 1991 1992 
Stocks   12.8   34.6 28.8 –23.3   8.3 17.1 50.6 97.0 
Bonds 100.8 161.8 10.6   –5.8 –1.4  9.2 74.6 87.1 

 
Year 1993 1994 1995 1996 1997 1999 1999 2000 

Stocks 151.3 133.6 140.1 238.2 243.5 165.9 194.3 309.0 
Bonds   84.6 –72.0   –6.8     3.3   30.0   79.2   –6.2 –48.0 

 
(a)  Construct the ANOVA table.   
(b)  State and test the hypotheses using the ANOVA F-statistic. 
(c)  Give the degrees of freedom for the F-statistic for the test of 0H . 
(d)  Verify that the square of the t statistic for the equivalent t test is equal to the F-statistic in the 
ANOVA table. 
 
 
Solution.  (a)  To construct an ANOVA table with the REG3 program, we first must enter our data into 
lists L1 (for stocks) and L2 (for bonds).  After doing so, bring up and execute the program.  (There is 
nothing to input, so just press ENTER.)   
 
       The program displays the F -statistic and P -value.  
The ANOVA table is stored in lists L4, L5, and L6 and 
contains the degrees of freedom (DF), the sum of 
squares (SS), and the mean square (MS) for each of the 
model (M), error (E), and total (T).    
 Program output ANOVA table 

 
(b)  The ANOVA test is about the linear regression slope 1β .  We test the null hypothesis 0H : 1β  = 0 
with the alternative aH : 1β  ≠  0.  With the above P -value of 0.2261, we do not have strong evidence in 
this case to reject 0H  in favor of the alternative.   
 
(c)  The degrees of freedom for the F-statistic is given by n − 1, which in this case is 14.  This number is 
the same as the degrees of freedom of the error (E) displayed in the ANOVA table.   
 
(d)  The LinRegTTest was applied in Exercise 10.17 and the results are displayed below.  The t statistic 
for the t test was computed as t = –1.266220727.  If we square this value, then we obtain 1.603314929, 
which is the actual value of the dispayed rounded-off F-statistic from the ANOVA test. 
 

    
Apply LinRegTTest. Output Scroll down. Square the t statistic. 
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Sample Correlation and the t Test 
 
One may be required to perform a correlation t test without an actual data set, but instead by using only 
the values of the sample correlation r and the sample size n.  Although the TI-83 Plus does not have a 
built-in procedure for this type of test, the t  statistic and P-value are  easily calculated in this case.  Here 
the test statistic, which follows a  ( 2)t n −  distribution, is given by 

 

2

2
1

r nt
r
−

=
−

 

 
 
Exercise 10.42  In a study of 564 children who were 2 to 6 years of age, the relationship of food 
neophobia and the frequency of consumption gave a correlation of r = –0.15 for meat.  Perform a 
significance test about the correlation of meat neophobia and the frequency of meat consumption among 
children 2 to 6 years of age. 
 
Solution.  We shall test 0H : ρ  = 0 versus aH : ρ  < 0.  The rejection region is a left tail; thus the P-
value will be the left-tail probability of the ( 2) (562)t n t− =  distribution.  We compute the t statistic and 

P-value “manually” by entering .15* (562) / (1 .15 ^ 2)− −  to obtain t≈  –3.59667.  Next, we 
compute the P-value ( (562) 3.59667)P t ≤ −  with the tcdf( command from the DISTR menu.  Here we 
enter tcdf(–1E99, –3.59667, 562) to obtain a P-value of 1.75×10–4. 
 

  
Evaluate test statistic  

2* ( 2) / 1r n r− − . 

Compute P-value. 

 
       If the true correlation were 0, then there would be only a 0.000175 probability of obtaining a sample 
correlation as low as r = –0.15 with a random sample of size 564.  We have statistical evidence to reject 

0H  in favor of the alternative that ρ  < 0. 
       We note that for a two-sided alternative, then our P-value would be 2× (1.75×10–4) = 3.5×10–4, which 
would still be small enough for us to reject 0H . 
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Introduction 
 
In this chapter, we demonstrate how to use a program for the TI-83 Plus to calculate a multiple linear 
regression model. 
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11.1    Inference for Multiple Regression 
 
The MULTREG program below computes the regression coefficients and an ANOVA table for the 
multiple linear regression model 0 1 1 ...y x pxpµ β β β= + + + . The squared correlation coefficient, the F-
statistic, the P-value, and the standard deviation are also displayed. 
 

The MULTREG Program 
PROGRAM:MULTREG 
:Disp "NO. OF VAR." 
:Input M 
:Disp "NO. OF SAMPLES" 
:Input N 
:{M,M}→dim([B]) 
:{M,1}→dim([C]) 
:sum(seq([A](I,M),I,1,N))→ 
 [C](1,1) 
:For(J,1,M-1) 
:sum(seq([A](I,J)[A](I,M),I,1,N)) 
 →[C](J+1,1) 
:End 
:N→[B](1,1) 
:For(J,1,M-1) 
:sum(seq([A](I,J),I,1,N))→ 
 [B](1,J+1) 
:End 
:For(I,1,M-1) 
:[B](1,I+1)→[B](I+1,1) 
:End 
:For(J,1,M-1) 
:For(K,1,M-1) 
:sum(seq([A](I,J)[A](I,K),I,1,N)) 
 →[B](J+1,K+1) 
:End 
:End 
:[B]-1→*[C]→[D] 
:[C](1,1)/N→Y 
:{N,1}→dim([E]) 

 
:For(I,1,N) 
:[D](1,1)+sum(seq([D](J+1,1)[A](I,J), 
 J,1,M-1))→[E](I,1) 
:End 
:sum(seq(([E](I,1)-Y)2,I,1,N))→A 
:sum(seq(([A](I,M)- [E](I,1))2,I,1,N))→B 
:sum(seq(([A](I,M)-Y)2,I,1,N))→C 
:(A/(M-1))/(B/(N-M))→F 
:1-icdf(0,F,M-1,N-M)→P 
:{M-1,N-M,N-1}→L1 
:{A,B,C}→L2 
:L2/L1→L3 
:sum(seq(([A](I,M)-[E](I,1))2,I,1,N))→R 
:ClrHome 
:Disp "DF,SS,MS (M,E,T)" 
:Disp {M-1,round(A,3),round(A/ 
 (M-1),3)} 
:Disp {N-M,round(B,3),round(B/ 
 (N-M),3)} 
:Disp {N-1,round(C,3),round(C/ 
 (N-1),3)} 
:Output(5,2,"R2") 
:Output(5,5,round(A/C,9)) 
:Output(6,2,"F") 
:Output(6,5,round(F,9)) 
:Output(7,2,"P") 
:Output(7,5,round(P,9)) 
:Output(8,2,"S") 
:Output(8,5,round(_(R/(N-M)),9)) 

 
       To execute the program, we first must enter our sample data into matrix [A], and we must specify 
how many variables are being used, which includes the several independent variables and the dependent 
variable.  For example, the model 0 1 1 2 2 3 3 4 4 5 5y x x x x xµ β β β β β β= + + + + +  
has six variables, one of which is being predicted from the other five.  The displayed ANOVA table is 
also stored into lists L1, L2, and L3.  The program stores the regression coefficients of the model in 
matrix [D]. 
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11.2    A Case Study 
 
Example  Consider the CSDATA of a sample of 24 students at a large university that uses a 4.0 GPA 
grade scale.  Run a multiple regression analysis for predicting the GPA from the three high school grade 
variables. 
 

OBS GPA HSM HSS HSE SATM 
  1 3.32 10 10 10 670 
  2 2.26   6   8   5 700 
  3 2.35   8   6   8 640 
  4 2.08   9 10   7 670 
  5 3.38   8   9   8 540 
  6 3.29 10   8   8 760 
  7 3.21   8   8   7 600 
  8 2.00   3   7   6 460 
  9 3.18   9 10   8 670 
10 2.34   7   7   6 570 
11 3.08   9 10   6 491 
12 3.34   5   9   7 600 
13 1.40   6   8   8 510 
14 1.43 10   9   9 750 
15 2.48   8   9   6 650 
16 3.73 10 10   9 720 
17 3.80 10 10   9 760 
18 4.00   9   9   8 800 
19 2.00   9   6   5 640 
20 3.74   9 10   9 750 
21 2.32   9   7   8 520 
22 2.79   8   8   7 610 
23 3.21   7   9   8 505 
24 3.08   9 10   8 559 

 
Solution.  We use the model 0 1 2 3HSM HSS HSEGPAµ β β β β= + × + × + × , which is of the form 

0 1 1 2 2 3 3y x x xµ β β β β= + + + .  In this case, there are 24 sample points and four variables.   
       We must first enter the data into matrix [A], much as we have been entering data into lists.  Matrix 
[A] should have 24 rows and 4 columns.  However, to execute the program correctly, the dependent 
variable must be in the last column. 
       In the MATRX EDIT screen, enter the dimensions of matrix [A] as 24 × 4, then enter the data.  The 
TI-83 Plus enters data into a matrix by going sequentially across the rows.  So the first row will be  10  10  
10  3.32, and the second row will be 6  8  5  2.26.  After the data is entered into matrix [A], execute the 
MULTREG program. 
 

    
MATRX EDIT Enter data into the  

24 ×  4 matrix [A]. 
Dependent variable in 

last column 
Execute MULTREG. 
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Output Model coefficients 

in matrix [D]. 
Predicted values in 

matrix [E] 
Scroll down. 

 
       The displayed ANOVA table gives the degrees of freedom (DF), the sum of squares (SS), and the 
mean square (MS) for each of the model (M), error (E), and total (T).  The table is also stored into lists 
L1, L2, and L3 in the STAT EDIT screen.  The squared correlation coefficient, the F-statistic and P-
value of the F-test, and the standard deviation S are also displayed.  The value of R2 here is telling us that 
only 32.8% of the GPAs are explained by the high school variables. 
       The F-test is for the null hypothesis that each variable coefficient of the linear regression model is 
equal to 0:  0 1 2 3: 0H β β β= = = .  In this case, the P-value is 0.0433, which is a value usually 
considered low enough to be statistically significant.  Thus, even with this small sample of size 24, we 
have enough evidence to reject 0H . 
       The program stores the computed regression coefficients in matrix [D].  In this case, our model 
becomes GPAµ  ≈ –0.228 +  0.0397 × HSM +  0.242377 × HSS +  0.085171 × HSE. Finally, the program 
stores the model’s predicted values for each sample point in matrix [E]. 
 
 
Example  Use the preceding regression model to predict the GPA of a student with HSM = 8, HSS = 7, 
and HSE = 10. 
 
Solution.  We must evaluate –0.228 +  0.0397 × HSM +  0.242377 × HSS +  0.085171 × HSE  for these 
variables, which is easy enough to compute on the Home screen.  However, if we want a more accurate 
(non-rounded) value, then we can perform matrix multiplication with the regression coefficients stored in 
matrix [D]. 
       To multiply the matrices, we will enter the given variables into matrix [F].  But we must include an 
additional 1 to account for the slope.  So we will enter the variables {1, 8, 7, 10} into a 1×4 matrix [F] in 
the MATRX EDIT screen.  After entering the values into [F], return to the Home screen and multiply 
[F]* [D]. (Retrieve the matrices from the MATRX NAMES screen).  The predicted GPA is about 2.64. 
 

   
MATRX EDIT item 6 Enter 1, 8, 7, 10  

into matrix [F]. 
Multiply [F] and [D]. 

 
 
Example  With the above 24 sample points from the CSDATA, perform regression analysis for 
predicting the SATM from the three high school grade variables.  Then find the predicted SATM for a 
student with HSM = 9, HSS = 6, and HSE = 8. 
 
Solution.  First, we must edit the last column of matrix [A] so that it contains the SATM scores.  Then we 
can rerun the MULTREG program to obtain a new regression model in matrix [D].  
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Edit matrix [A]. MULTREG output  Model coefficients 

in matrix [D]. 
ANOVA table in the 
STAT EDIT screen 

 
       The new model is SATMµ  = 330.2115+  29.7376 × HSM + 3.4469 × HSS +  3.7658× HSE. We note 
that the displays of the mean square errors in the ANOVA table have been truncated from the Home 
screen; however, they are easily recovered from the STAT EDIT screen.   
       The displayed P-value of 0.0348 gives us statistical evidence to reject that all regression coefficients 
of HSM, HSS, and HSE are 0.  Thus, at least one coefficient is non-zero, and its parameter is correlated to 
SATM scores.  If we store {1, 9, 6, 8} in the 1×4 matrix [F] and multiply [F]* [D], then we obtain a 
predicted SATM score of about 649. 
 
Exercise 11.20  Below are some data for the top ten Internet brokerages. 
 

ID Broker Mshare Accts Assets 
1 Charles Schwab 27.5 2500 219.0 
2 E*Trade 12.9   909   21.1 
3 TD Waterhouse 11.6   615   38.8 
4 Datek 10.0   205     5.5 
5 Fidelity  9.3 2300 160.0 
6 Ameritrade  8.4   428   19.5 
7 DLJ Direct  3.6   590   11.2 
8 Discover  2.8   134    5.9 
9 Suretrade  2.2   130    1.3 

10 National Discount Brokers  1.3   125    6.8 
 
(a)  Use a simple linear regression to predict assets using the number of accounts.  Give the regression 
equation and the results of the significance test for the regression coefficient. 
(b)  Do the same using market share to predict assets. 
(c)  Run a multiple regression using both the number of accounts and market share to predict assets.  Give 
the multiple regression equation and the results of the significance test for the two regression coefficients. 
(d)  Compare the results of parts (a), (b), and (c). 
 
Solution.  (a)  We shall use the LinRegTTest feature (item E in STAT TESTS menu).  To do so, we will 
enter the data into lists L4, L5, and L6.  Then we execute the LinRegTTest on lists L5 and L6 to obtain a 
linear regression equation of 17.1215 0.0832y a bx x= + ≈ − +  for predicting assets using the number 
of accounts.  
 

    
Enter data into lists 

L4, L5, and L6. 
Apply LinRegTTest 

to L5 and L6. 
Output Scroll down. 
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       The P-value for a two-sided significance test is 64.2667 10−× .  If the regression coefficient 1β  were 
equal to 0, then there would be only a very small chance of obtaining a value of b as large as 0.0832, or a 
correlation as high as 0.96827, even with such a small sample.  Thus, we have strong evidence to reject 
the hypothesis that β  = 0. 

 
(b)  Now we execute the LinRegTTest on lists L4 and L6 to obtain a linear regression equation of 

19.9 7.68y a bx x= + ≈ − +  for predicting assets using market share.  
 

                 
 
       The P-value for the two-sided significance test is 0.007761.  If the regression coefficient 1β   were 
equal to 0, then there would be less than a 1% chance of obtaining a value of b as high as 7.68 or a 
correlation as high as 0.78.  Thus, we again can reject the hypothesis that β  = 0. 
 
(c)  To execute the MULTREG program, we must first move the data to matrix [A].  To do so, we can 
use the List→matr( command from the MATRX MATH menu.  After bringing this command to the 
Home screen, enter the command List→matr(L4,L5,L6,[A]), where [A] is retrieved from the MATRX 
NAMES menu. 
 

   
MATRX MATH item 9 Move data to matrix [A]. Observe data. 

                 
       Lastly, execute the MULTREG program and bring up matrix [D] to see the regression coefficients: 
 

                 
 
       We obtain a multiple linear regression equation of 
 

21.4532 1.15754 0.0756Assets Mshare Acctsµ = − + × + ×  
 

The P-value of (approximately) 0 gives significant evidence to reject the null hypothesis that 
1 2 0β β= = . 

 
(d)  Comparing the 2r  values from each part, we see that the multiple linear regression provides the best 
“fit” with 94.35% of the assets being explained by the other two variables. 
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Introduction 
 
In this chapter, we perform one-way analysis of variance (ANOVA) to test whether several normal 
populations, assumed to have the same variance, also have the same mean.  
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12.1   Inference for One-Way Analysis of Variance 
 
We begin with an exercise that demonstrates the TI-83’s built-in analysis of 
variance ANOVA( command from the STAT TESTS menu (item F). 

 
 
Exercise 12.27  The data below give the lengths in millimeters of three varieties of the tropical flower 
Heliconia, which are fertilized by different species of hummingbird on the island of Dominica.  Perform 
an ANOVA test to compare the mean lengths of the flowers for the three species. 
 

H. bihai 
47.12 46.75 46.81 47.12 46.67 47.43 46.44 46.64 
48.07 48.34 48.15 50.26 50.12 46.34 46.94 48.36 

 
H. caribaea red 

41.90 42.01 41.93 43.09 41.47 41.69 39.78 40.57 
39.63 42.18 40.66 37.87 39.16 37.40 38.20 38.07 
38.10 37.97 38.79 38.23 38.87 37.78 38.01  

 
H. caribaea yellow 

36.78 37.02 36.52 36.11 36.03 35.45 38.13 37.1 
35.17 36.82 36.66 35.68 36.03 34.57 34.63  

 
 
Solution.  The built-in ANOVA( command requires the data to be in lists.  Here we shall enter the data 
into lists L1, L2, and L3.  After doing so, we evaluate the basic statistics of each list.    
 

    
Enter data into lists. 1–Var Stats L1 1–Var Stats L2 1–Var Stats L3 

 
 
       Next, we test the hypothesis that the mean lengths of the three species are equal:  0 1 2 3:H µ µ µ= = .  
To do so, we bring the ANOVA( command to the Home screen and enter the command ANOVA(L1, L2, 
L3). 
 

   
Execute ANOVA. Output Scroll down. 
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       We receive a P-value of 1.92 × 10–27 from an F-statistic of 259.1193.  The pooled deviation value is 
also displayed as Sxp ≈  1.4455.  If the true means were equal, then there would be almost no chance of 
the sample means varying by as much as they do with samples of these sizes.  Thus, we have significant 
evidence to reject the claim that the mean lengths of these species are equal.  We note that the R2 value is 
not displayed, but it can be computed from the two displayed SS values.  Here we can use R2 = SSF/(SSF 
+  SSE) = 1082.87237/(1082.87237 +  106.565761) ≈  0.9104. 
       Because we have rejected the hypothesis that the means lengths are all equal, we can say that there is 
at least one pair of species that have different means.  From the summary statistics, it appears that the 
species H. bihai and H. caribaea yellow have different mean lengths.  But the sample means of H. 
caribaea red and H. caribaea yellow are close enough so that one might hypothesize that these species 
have the same mean length. 
       We can test any pair of species for equality of mean very quickly using the 2–SampTTest screen.  
We demonstrate below with the pairs (L1, L2) and (L2, L3).  Due to the extremely low P-values in the 
outputs, we see that we can reject both that 1 3µ µ=  and that 2 3µ µ= .   
 

    
2–SampTTest 
on L1 and L3 

Output 2–SampTTest 
on L2 and L3 

Output 

 
        

ANOVA for Summary Statistics 
 
When raw data are given, then we can enter the data into lists and use the built-in ANOVA( command to 
test for equality of means. However, sometimes the summary statistics are given instead.  In this case, we 
can use the ANOVA1 program below to perform the analysis of variance.   
 

The ANOVA1 Program  
 

PROGRAM:ANOVA1 
:1-Var Stats L2,L1 
:sum(seq(L1(I)(L2(I)- x )2,I,1,dim(L1)))→A 
:sum(seq((L1(I)-1)(L3(I)2),I,1,dim(L1)))→B 
:dim(L1)→I 
:(A/(I-1))/(B/(n-I))→F 
:1-icdf(0,F,I-1,n-I)→P 
: (sum(seq((L1(J)-1)*L3(J)2,J,1,dim(L1))) 
 /(n-I))→S 
:ClrHome 
:Output(2,1,"MEAN") 
:Output(2,6, x ) 

:Output(3,1,"SP") 
:Output(3,6,S) 
:Output(4,1,"MSG") 
:Output(4,6,A/(I-1)) 
:Output(5,1,"MSE") 
:Output(5,6,B/(n-I)) 
:Output(6,1,"R^2") 
:Output(6,6,A/(A+B)) 
:Output(7,1,"F") 
:Output(7,6,F) 
:Output(8,1,"P") 
:Output(8,6,round(P,8)) 
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       The program computes and displays the overall sample mean, the pooled sample deviations ps , the 
mean square for groups MSG, the mean square for error MSE, the coefficient of determination, the F-
statistic, and the P-value.  Before executing the program, enter the sample sizes into list L1, the sample 
means into list L2, and the sample deviations into list L3. 
 
 
Example 12.3  The table below gives the summary data on safety climate index (SCI) as rated by workers 
during a study on workplace safety.  Apply the ANOVA test and give the pooled deviation, the value of 
R2, the F-statistic, and the P-value. 
 

Job category n  x  s  
Unskilled workers 448 70.42 18.27 

Skilled workers   91 71.21 18.83 
Supervisors   51 80.51 14.58 

 
 
Solution.  Enter the summary statistics into lists L1, L2, and L3, and execute the ANOVA1 program.  
The desired statistics are then displayed.  In particular, we obtain a pooled deviation of 

ps  = 18.07355 
and a coefficient of determination of R2 ≈  0.023756. 
 

   
Enter values of n , x , and s  

into lists L1, L2, and L3. 
Execute ANOVA. Output 

 
       Due to the low P-value of 0.00086, we see that there is strong evidence to reject the claim that each 
group of workers has the same mean SCI.  

 
 
 
12.2   Comparing the Means 
 
In this section, we provide a program for analyzing population contrasts based on summary statistics.  
Before executing the CONTRAST program, enter the sample sizes into list L1, the sample means into 
list L2, the sample deviations into list L3, and the contrast equation coefficients into list L4.  When 
prompted during the program, enter either 1 or 2 for a one-sided or two-sided alternative.  The program 
then displays the P-value for a significance test and a confidence interval for mean contrast.   
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The CONTRAST Program 
 

PROGRAM:CONTRAST 
:Disp "ALTERNATIVE" 
:Input A 
:Disp "CONF. LEVEL" 
:Input R 
:1-Var Stats L2,L1 
: (sum(seq((L1(I)-1)*L3(I)2, 
  I,1,dim(L1)))/(n-dim(L1)))→S 
:sum(seq(L2(I)L4(I),I,1,dim(L1)))→C 
:S (sum(seq(L4(I)2/L1(I),I,1, 
  dim(L1))))→E 
:C/E→T 
:1-Var Stats L1 
: ∑  x-dim(L1)→D 

:0.5-tcdf(0,abs(T),D)→P 
:ClrHome 
:Disp "P-VALUE" 
:If A=1 
:Then 
:Disp P 
:Else 
:Disp 2*P 
:End 
:"tcdf(0,X,D)"→Y1 
:solve(Y/-R/2,X,2)→Q 
:Disp "CONF.INTERVAL" 
:Disp {round(C-QE,3), 
 round(C+QE,3)} 

 
 
Example 12.15  Using the data from Example 12.3, perform a two-sided significance test for the contrast 
between the average SCI of supervisors compared with the other two groups of workers.  Also, find a 
95% confidence interval for the contrast. 
 

Solution.  We use the contrast equation 
1 1ψ 1
2 2UN SK SUµ µ µ= − − + , and test the hypothesis 0H : 

1 1
2 2SU UN SKµ µ µ= +  with the alternative aH :

1 1
2 2SU UN SKµ µ µ≠ + . 

       If we still have the sample sizes, sample means, and sample deviations entered into lists L1, L2, and 
L3, then we just need to add the coefficients of ψ  into list L4.  Then we execute the CONTRAST 
program by entering 2 for two-sided alternative and entering the desired confidence level. 
 

   
Enter summary statistics into 

lists L1, L2, and L3, and 
coefficients of ψ  into L4. 

Execute CONTRAST with a 
two-sided alternative, and a 

95% confidence level. 

Output 

 
       With the low P-value of 0.000425876, we see that there is a significant contrast.  According to the 
displayed confidence interval, the mean SCI rating by supervisors could be from 4.322 higher to 15.068 
higher than the average of the mean SCI ratings by unskilled workers and skilled workers. 
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The Power of the ANOVA Test 
 
Lastly, we provide a supplementary program to compute the approximate power of the ANOVA test 
under the alternative aH  that the true population means are 1µ , 2µ , . . ., Iµ .  The power is computed by 
using a Winer approximation of the noncentral F distribution. 
 
 

The ANPOWER Program 
 

PROGRAM:ANPOWER 
:Disp "LEVEL OF SIG?" 
:Input A 
:Disp "STANDARD DEV?" 
:Input S 
:sum(seq(L1(I),I,1,dim(L/)))→N 
:sum(seq(L1(I)*L2(I),I,1,dim(L1)))/ 
 N→M 
:sum(seq(L1(I)*(L2(I)-M)^2,  
 I,1,dim(L1)))/S^2→L 
:dim(L1)-1→U 
:N-dim(L1)→V 
:"icdf(0,X,U,V)"→Y1 
:solve(Y1-(1-A),X,5(UV-2V)/ 
 (UV+2U))→C 

:(  ((2V-1)*(U/V)*C)-  (2(U+L)- 
 (U+2L)/(U+L)))/  ((U+2L)/(U+L)+ 
 (U/V)C)→Z 
:normalcdf(Z,1E99,0,1)→P 
:ClrHome 
:Output(1,2,"F*") 
:Output(1,5,C) 
:Output(2,1,"DFG") 
:Output(2,5,U) 
:Output(3,1,"DFE") 
:Output(3,5,V) 
:Output(4,1,"L") 
:Output(4,5,L) 
:Output(6,1,"PWR") 
:Output(6,5,P) 

 
 
       Before executing the ANPOWER program, enter the successive sample sizes 1n , . . . , In  into list 
L1 and the alternative population means 1µ , . . ., Iµ  into list L2.  Then enter the level of significance and 
the guessed standard deviation when prompted while running the program.  The approximate power is 
displayed along with the values of F*, DFG, DFE, and the noncentrality parameter λ . 
 
 
Example 12.27  A reading comprehension study had 10 subjects in each of three groups.  Estimate the 
power for the alternative 1µ  = 41, 2µ  = 47, 3µ  = 44, with σ  = 7, at the 5% level of significance. 
 
Solution.  First, we enter the three sample sizes of 10 into list L1 and the alternative means into list L2.  
Then we execute the ANPOWER program to obtain an approximate power of 0.35436. 
 

   
Enter sample sizes into L1 and 

alternative means into L2. 
Execute ANPOWER. Output 
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Introduction 
 
In this chapter, we provide a program that performs two-way analysis of variance to test for equality of 
means simultaneously among populations and traits in a two-factor experiment. 
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13.1   The Two-Way ANOVA Model 
 
Example 13.9  The table below gives the mean length of time (in minutes) that various groups of people 
spent eating lunch in various settings.  Plot the group means for this example. 
 
 Number of people eating 

Lunch setting 1 2 3 4 _5 
Workplace 12.6 23.0 33.0 41.1 44.0 
Fast food restaurant 10.7 18.2 18.4 19.7 21.9 

 
 
Solution.  We note that we cannot use ANOVA to analyze this data because each cell contains the mean 
of an unknown number of subjects, and we cannot assume that there is a fixed number of measurements 
per cell.  In order to perform two-way ANOVA, we also would need to know the sample sizes and the 
variances of the data that produced the mean of each cell.  However, we can plot the means with a time 
plot in order to observe a possible interaction. 
 
       First, enter the integers 1 through 5 into list L1, the 
five means for workplace diners into list L2, and the 
five means for the fast-foods into list L3.  Then adjust 
the WINDOW.  Next set Plot1 for a time plot of L1 
and L2, and set Plot2 for a time plot of L1 and L3.   
 Enter data. Adjust WINDOW. 

 

   
Adjust Plot1 settings. Adjust Plot2 settings. Graph. 

 
       We see that the patterns are not parallel; so it appears that we have an interaction. 
 
 
13.2   Inference for Two-Way ANOVA 
 
In this section, we give the ANOVA2 program that can be used to perform two-way analysis of variance 
given the summary statistics having c observations per cell.   
 
 
Example 13.11  The tables below give the summary statistics for the heart rate after six minutes of 
exercise on a treadmill.  There were 200 subjects in each of the four combinations of male or female and 
athletic or sedentary.  Use two-way ANOVA to test whether the mean heart rate is independent of sex 
and/or independent of lifestyle.   
    

              Means                                Deviations 
 Runners Control   Runners Control 

Female 115.99 148.00  Female 15.97 16.27 
Male 103.98 130.00  Male 12.50 17.10 
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The ANOVA2 Program 

 
PROGRAM:ANOVA2 
:Disp "NO. OF ROWS" 
:Input R 
:Disp "NO. OF COL." 
:Input S 
:Disp "NO. PER CELL" 
:Input C 
:ClrList L1,L2,L3,L4,L5 
;For(I,1,R) 
:I→L/(I) 
:sum(seq([A](I,J),J,1,S))/S→L2(I) 
:End 
:sum(seq(L2(I),I,1,R))/R→L5(1) 
:For(J,1,S) 
:J→L3(J) 
:sum(seq([A](I,J),I,1,R))/R→L4(J) 
:End 
:CS*sum(seq((L2(I)-L5(1))2,I,1,R))  
 →L5(2) 
:CR*sum(seq((L4(J)-L5(1))2,J,1,S))   
 →L5(3) 
:For(I,1,R) 
:sum(seq(([A](I,J)+L5(1)-L2(I)- 
 L4(J))2,J,1,S))→L6(I) 
:End 
:C*sum(seq(L5(I),I,1,R))→L5(4) 
:If C=1 
:Then 
:(S-1)*L5(2)/L5(4)→U 
:(R-1)*L5(3)/L5(4)→V 
:Else 
:For(I,1,R) 
:sum(seq((C-1)[B](I,J)2,J,1,S)) 
 →L6(I) 
:End 
:sum(seq(L6(I),I,1,R))→L5(5) 

:(L5(2)/(R-1))/(L5(5)/(RS(C-1)))→U 
:(L5(3)/(S-1))/(L5(5)/(RS(C-1)))→V 
:(L5(4)/(R-1)/(S-1))/(L5(5)/ 
 (RS(C-1)))→W 
:End 
:R-1→M 
:S-1→O 
:(R-1)(S-1)→Z 
:If C=1 
:Then 
:(R-1)(S-1)→N 
:Else 
:RS(C-1)→N 
:End 
:1-icdf(0,U,M,N)→T 
:1-icdf(0,V,O,N)→P 
:If C≠ 1 
:Then 
:1-icdf(0,W,Z,N)→Q 
:End 
:ClrHome 
:Output(1,2,"ROW F") 
:Output(1,8,round(U,5)) 
:Output(2,2,"ROW P") 
:Output(2,8,round(T,8)) 
:Output(4,2,"COL F") 
:Output(4,8,round(V,5)) 
:Output(5,2,"COL P") 
:Output(5,8,round(P,8)) 
:If C≠ 1 
:Then 
:Output(7,2,"INT F") 
:Output(7,8,round(W,5)) 
:Output(8,2,"INT P") 
:Output(8,8,round(Q,8)) 
:End 

 
       To execute the program, enter the means into matrix [A] and the standard deviations into matrix [B].  
(If there is only one observation per cell, then enter these values into matrix [A].) When prompted, enter 
the numbers of rows, columns, and observations per cell.  The program displays the F-statistics and P-
values for the row variable, for the column variable, and for the interaction when there is more than one 
observation per cell. 
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Solution.  First, enter the means into the 2 × 2 matrix [A] and enter the deviations into the 2 × 2 matrix 
[B].  Next, execute the ANOVA2 program by entering the number of rows (2), the number of columns 
(2), and the number per cell (200). 
 

    
Enter means  

into matrix [A]. 
Enter deviations 
 into matrix [B]. 

Execute ANOVA2. Output 

 
       We obtain a P-value for each factor as well as for the interaction.  The P-values for both the gender 
(row) and group (column) round to 0.  If either the two genders or the two groups produced the same 
mean, then there would be virtually no chance of the measurements being as varied as they are.  Thus, we 
can conclude that the means are significantly different.   
       The low P-value of 0.0066 for the interaction allows us to reject the hypothesis that there is no 
interaction among the four cells. 
        
       The ANOVA2 program also stores the marginal 
means for the rows and columns in lists L2 and L4.  
The overall mean is the first value 3.025 in list L5.  The 
remaining entries in L5 are the sum of squares for the 
row variable, column variable, interaction, and error.  

Marginal means 
by gender 

Marginal means 
by group 

 
       The program enumerates lists L1 and L3 to allow for easy plotting of the marginal means.  To graph, 
simply adjust the WINDOW settings, then set Plot1 for a time plot of L1 and L2, and set Plot2 for a time 
plot of L3 and L4. 
 

    
Adjust WINDOW. Adjust Plot1. Adjust Plot2. Graph. 

 
     Exercise 13.22  The table below gives the amount of iron in certain foods, measured in milligrams of 
iron per 100 grams of cooked food, after samples of each food were cooked in each type of pot.   
 

IRON  Food  
Type of pot Meat Legumes Vegetables 
Aluminum 
 

Clay 
 

Iron 

1.77   2.36   1.96   2.14 
 

2.27   1.28   2.48   2.68 
 

5.27   5.17   4.06   4.22 

2.40   2.17   2.41   2.34 
 

2.41   2.43   2.57   2.48 
 

3.69   3.43   3.84   3.72 

1.03   1.53   1.07   1.30 
 

1.55   0.79   1.68   1.82 
 

2.45   2.99   2.80   2.92 
 
(a)  Make a table giving the sample size, mean, and standard deviation for each type.  (b)  Plot the means.  
(c)  Perform two-way ANOVA on the data regarding the main effects and interaction. 
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Solution.  There are two factors, type of pot and type of food, each of which has three types.  Thus, there 
are nine cells, each with four measurements per cell.  To perform two-way ANOVA with the ANOVA2 
program, we first must compute the mean and standard deviation of each cell.   
       If we enter the four measurements per cell into lists L1 through L9, then 
we can do the computations pairwise by successively entering the commands 
2–Var Stats L1,L2, then 2–Var Stats L3,L4, and so on.  The means and 
deviations for the first four cells are displayed below. 

 
 Enter data into lists. 

 

    
2–Var Stats L1,L2 2–Var Stats L3,L4 

 
       After doing all the computations, we obtain two new data tables.   
 

Means Meat Legumes Vegetables 
Aluminum 2.0575 2.33 1.2325 

Clay 2.1775 2.4725 1.46 
Iron 4.68 3.67 2.79 

 
Deviations Meat Legumes Vegetables 
Aluminum 0.2519755 0.1110555 0.2312826 

Clay 0.6213091 0.0713559 0.4600724 
Iron 0.6282781 0.1726268 0.2398611 

 
       Next, enter the means into matrix [A] and the standard deviations into matrix [B].  Then execute the 
ANOVA2 program by entering the number of rows (3), the number of columns (3), and the number of 
measurements per cell (4). 
 

    
Enter means into 

matrix [A]. 
Enter deviations into 

matrix [B]. 
Execute ANOVA2. Output 

 
       We obtain very low P-values for both factors and for the interaction.  Therefore, we can conclude 
that, even with these small samples, there is a significant difference in the mean due to type of pot and 
due to type of food.  Also, there is a statistically significant interaction. 
       After the ANOVA2 program runs, the three marginal means for the rows (type of pot) are stored in 
list L2, and the three marginal means for the columns (food type) are stored in list L4.  We now can plot 
either or both sets of marginal means. 
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Marginal means are 
stored in L2 and L4. 

Adjust WINDOW. Adjust Plot1. Adjust Plot2. 

 

 
Marginal means for 

type of pot 

 
Marginal means for 

 type of food 

 
Both sets of  

marginal means 
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Introduction 
 
In this chapter, we demonstrate the bootstrap methods for estimating population parameters.  Throughout, 
we use TI-83 Plus programs to perform the necessary resampling procedures. 
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14.1   The Bootstrap Idea 
 
We first provide a TI-83 Plus program that performs resampling on a previously obtained random sample.  
Before executing the BOOT program, enter the random sample into list L1. Then bring up the program 
and enter the desired number of resamples.  If you also want a confidence interval for the statistic, enter 1 
for CONF. INTERVAL?; otherwise, enter 0.  The program takes resamples from the entered random 
sample, enters their means into list L2, and displays the mean and bootstrap standard error of the 
resamples.   
 

The BOOT Program 
 

Program:BOOT 
:dim(L1)→N 
:Disp "NO. OF RESAMPLES" 
:Input B 
:Disp "CONF. INTERVAL?" 
:Input Y 
:If Y=1 
:Then 
:Disp "CONF. LEVEL" 
:Input R 
:"tcdf(0,X,N-1)"→Y1 
:solve(Y1-R/2,X,2)→Q 
:1-Var Stats L1 
: x→X 
:End 
:ClrList L2 
:For(I,1,B) 

 
:randInt(1,N,N)→L3 
:sum(seq(L1(L3(J)),J,1,N))/N→L2(I) 
:End 
:ClrList L3 
:1-Var Stats L2 
:ClrHome 
:Disp "AVG OF RESAMPLES" 
:Disp x  
:Disp "BOOT SE" 
:Disp Sx 
:If Y=1 
:Then 
:Output(6,2,"CONF. INTERVAL") 
:Output(7,2,X-Q*Sx) 
:Output(8,2,X+Q*Sx) 
:End 

 
 
Exercise 14.7   Here is an SRS of 20 guinea pig survival times (in days) during a medical trial.  Create 
and inspect the bootstrap distribution of the sample mean for these data. 
   

  92 123   88 598 100 114 89 522 58 191 
137 100 403 144 184 102 83 126 53  79 

 
 
Solution.  We will use the BOOT program with 100 resamples to create a bootstrap distribution.  But 
first, we must enter the data into list L1.  In this running of the program, we will not find a confidence 
interval, so we enter 0 for CONF. INTERVAL? when prompted.  After taking a few minutes to execute, 
the program stores the 100 means from the resamples in list L2. 
 

    
Enter data into L1. Execute BOOT. Output Observe L2. 
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       To assess the normality of the distribution of the resample means, we shall make a  histogram of the 
data in list L2.  We adjust the WINDOW to reflect the range of these data, adjust the STAT PLOT 
settings, then press GRAPH.  We see that the bootstrap distribution appears close to normal. 

 

   
Adjust WINDOW. Adjust STAT PLOT. Bootstrap histogram 

 
 
Exercise 14.8  Compute the standard error /s n  for the 20 survival times in Exercise 14.7 and compare 
it with the bootstrap standard error from the resampling done in that exercise. 
 
Solution.  With the data entered into list L1, we can use the command 1–Var Stats L1 to compute the 
sample deviation s.  Then retrieving the variable Sx from the VARS Statistics menu, we enter the 
command Sx/√(20) to compute the standard error. 
 

   
Compute statistics. Output VARS Statistics 3Standard error 

 
       We see that standard error of 34.294629 is slightly higher than the bootstrap standard error of 31.474 
obtained from our 100 resamples in Exercise 14.7. 
 
 
14.2   First Steps in Using the Bootstrap 
 
In this section, we demonstrate how to compute a bootstrap t confidence interval for a population 
parameter.  We begin though with a quick estimation of the bias obtained using the preceding exercises. 
 
 
Exercise 14.9  Return to the 20 guinea pig survival times from Exercise 14.7. 
(a)  What is the bootstrap estimate of the bias?   
(b)  Give the 95% bootstrap t confidence interval for µ . 
(c)  Give the usual 95% one-sample t  confidence interval. 
 
Solution.  (a)  In Exercise 14.8, we found the sample mean of the data, along with the standard deviation, 
when using the 1–Var Stats command.  From the output display, we see that x  = 169.3.  The average of 
all 100 resample means obtained in Exercise 14.7 was 169.518.  Thus, the bootstrap estimate of bias is 
169.518 – 169.3 = 0.218. 
 
(b)  We now apply the formula *SEbootx t± , where the critical value t* is from the t(n−1) distribution 
and the sample size is n = 20.  To find this critical value from the t(19) distribution, we can use the 
TSCORE program (page 50).  Doing so, we obtain t* = 2.093. 
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The 95% bootstrap t confidence interval becomes 169.3 
±  2.093 31.474× 2.093 31.474× , or (103.425, 
235.175). 
 

   
 
Note:  This confidence interval would have been computed and displayed when executing the BOOT 
program in Exercise 14.7 had we entered 1 for CONF. INTERVAL?.  A different bootstrap confidence 
interval is displayed below from another execution of the BOOT program. 
 

         
 
 
(c)  To compute the standard one-sample t confidence interval, we use the TInterval feature from the 
STAT TESTS menu.  After adjusting the List to L1, we calculate a 95% confidence interval of (97.521, 
241.08).   
 

                 
 

 
 

Confidence Interval for Trimmed Mean 
 
Next, we demonstrate a program that will compute a bootstrap t confidence interval for a trimmed mean.  
Before executing the BOOTTRIM program given on the next page, enter the random sample into list L1.  
Then enter the desired number of resamples, the decimal amount to be trimmed at each end, and the 
desired confidence level when prompted.  The program takes resamples from the entered random sample 
and enters their trimmed means into list L2.  Then the trimmed mean of the original sample, the trimmed 
bootstrap standard error, and the confidence interval are displayed. 
 
 
Example 14.5  The table below gives an SRS of 50 real estate sale prices in Seattle (in thousands of 
dollars) during 2002.  Use the bootstrap t method to give a 95% confidence interval for the 25% trimmed 
mean sale price. 
 

142 
132.5 
362 
335 
222 

175 
215 
307 
1370 
179.8 

197.5 
116.7 
266 
256 
257 

149.4 
244.9 
166 
148.5 
252.95 

705 
290 
375 
987.5 
149.95 

232 
200 
244.95 
324.5 
225 

50 
260 
210.95 
215.5 
217 

146.5 
449.9 
265 
684.5 
570 

155 
66.407 
296 
270 
507 

1850 
164.95 
335 
330 
190 
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Solution.  After entering the data into list L1, we simply execute the BOOTTRIM program.  Here we use 
50 resamples.  The trimmed mean of the original sample is given as 240.562, and the desired confidence 
interval is (207.70224, 273.42176). 
 

   
Enter data into L1. Execute BOOTTRIM. Output 

 
Note:  Due to programming differences, the trimmed mean given by the BOOTTRIM program may not 
agree with the value given by software.  Because the sample size of 50 is not a multiple of 4, we cannot 
trim precisely 25% of the measurements from the high and low end.  In the case of example 14.5 above, 
the BOOTTRIM program trimmed the lowest 12 and the highest 13 measurements before computing the 
trimmed sample mean. 
 
 

The BOOTTRIM Program 
 

Program:BOOTTRIM 
:dim(L1)→N 
:Disp "NO. OF RESAMPLES" 
:Input B 
:Disp "DEC. TRIM AMT? 
:Input M 
:Disp "CONF. LEVEL" 
:Input R 
:"tcdf(0,X,N-1)"→Y1 
:solve(Y1-R/2,X,2)→Q 
:int(M*N)+1→L 
:int((1-M)*N)→U 
:SortA(L1) 
:sum(seq(L1(I),I,L,U))/(U+1-L)→X 
:ClrList L2,L4 
:For(I,1,B) 
:randInt(1,N,N)→L3 

 
:For(J,1,N) 
:L1(L3(J))→L4(J) 
:End 
:SortA(L4) 
:sum(seq(L4(I),I,L,U))/(U+1-L)→L2(I) 
:End 
:ClrList L3,L4 
:1-Var Stats L2 
:ClrHome 
:Disp "TRIM SAMPLE AVG" 
:Disp X 
:Disp "BOOT SE" 
:Disp Sx 
:Output(6,2,"CONF. INTERVAL") 
:Output(7,2,X-Q*Sx) 
:Output(8,2,X+Q*Sx) 

 
 

Difference in Means 
 

We conclude this section with a program that computes a bootstrap t confidence interval for the difference 
in means.  Before executing the BOOTPAIR program, enter a random sample from the first population 
into list L1 and enter a random sample from the second population into list L2.  Then enter the desired 
number of resamples and the confidence level.  The resampled differences in mean are stored in list L3. 
The difference of the original sample averages is displayed along with the bootstrap standard error and the 
confidence interval. 
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The BOOTPAIR Program 
 

Program:BOOTPAIR 
:dim(L1)→N 
:dim(L2)→M 
:Disp "NO. OF RESAMPLES" 
:Input B 
:Disp "CONF. LEVEL" 
:Input R 
:1-Var Stats L1 
: x→X 
:1-Var Stats L2 
: x→Y 
:ClrList L3,L4 
:For(I,1,B) 
:randInt(1,N,N)→L5 
:randInt(1,M,M)→L6 
:sum(seq(L1(L5(J)),J,1,N))/N→L3(I) 
:sum(seq(L2(L6(J)),J,1,M))/M→L4(I) 
:End 

:1-Var Stats L3 
:Sx→S 
:1-Var Stats L4 
:Sx→T 
:int((S2/N+T2/M)2/((S2/N) 2/ 
 (N-1)+(T2/M) 2/(M-1)))→P 
:_(S¯/N+T¯/M)→D 
:"tcdf(0,X,P)"→Y1 
:solve(Y1-R/2,X,2)→B 
:B*D→E 
:ClrHome 
:Disp "DIFF OF AVGS" 
:Disp X-Y 
:Disp "BOOT SE" 
:Disp D 
:Output(6,2,"CONF. INTERVAL") 
:Output(7,2,X-Y-E) 
:Output(8,2,X-Y+E) 

 
 
 
Exercise 14.14  Following are the scores from Table 14.3 on a test of reading ability for two groups of 
third-grade students.   
 

Treatment group Control group 
24 61 59 46
43 44 52 43
58 67 62 57
71 49 54
43 53 57
49 56 33  

42 33 46 37
43 41 10 42
55 19 17 55
26 54 60 28
62 20 53 48
37 85 42  

 
 
(a)  Bootstrap the difference in means 1 2x x−  and give the bootstrap standard error and a 95% bootstrap t 
confidence interval.   
(b)  Compare the bootstrap results with a two-sample t confidence interval.  
 
 
Solution.  (a)  We first enter the treatment scores into list L1 and the control scores into list L2.  We shall 
use 30 resamples to bootstrap the difference in means and to obtain a 95% confidence interval.  Upon 
executing the BOOTPAIR program, we obtain a bootstrap standard error of about 1.074 and a 
confidence interval of (7.769, 12.1399). 
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Enter data into L1 and L2. Execute BOOTPAIR. Output 

 
                 

(b)  To find a traditional two-sample t confidence interval, we can use the 2–SampTInt feature from the 
STAT TESTS menu.  Because we are not assuming normal populations with the same variance, we do 
not pool the sample variances.  Upon calculating, we obtain a 95% confidence interval of (1.233, 18.676).  
This interval is much wider than the bootstrap interval due to the much larger standard error obtained 
when using the original sample deviations xs  and ys  as opposed to the sample deviations from the 
collection of resample means. 
 

                 
 
14.3   How Accurate Is a Bootstrap Distribution? 
 
Below we work an exercise (with some slight variations) to demonstrate how the bootstrap distribution 
varies with the sample size. 
 
 
Exercise 14.23 (a)  Draw an SRS of size 10 from a N(8.4, 14.7) population.  What is the exact 
distribution of the sampling mean x  for this sample size?  (b)  Bootstrap the sample mean using 100 
resamples.  Give a histogram of the bootstrap distribution and the bootstrap standard error.  (c)  Repeat 
the process for a sample of size 40. 
 
Solution.  (a)  For an SRS of size n  = 10 from a N(8.4, 14.7) population, 

(8.4,14.7 / 10) (8.4,4.648548)x N N≈∼ .  To draw such an SRS, we will use the randNorm( 
command from the MATH PRB menu.  Enter the command randNorm(8.4, 24.7, 10)→L1 to store the 
SRS in list L1. 
 

   
MATH PRB Item 6 Store SRS into L1. Observe L1. 

 
(b)  With the sample in list L1, we can execute the BOOT program to bootstrap the sample mean.  In this 
case, we enter 0 for CONF. INTERVAL? because we are only interested here in the bootstrap 
distribution.  Due to the small sample size, we obtain statistics of this bootstrap distribution that differ 
noticeably from those of the (8.4,4.648548)N  distribution.  A histogram of the resample means stored 
in list L2 is also shown on the following page. 
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Execute BOOT. Bootstrap statistics Adjust WINDOW. Histogram of L2. 

 
(c)  We now repeat the process for an SRS of size 40.  With this sample size, the bootstrap distribution 
statistics become much closer to the actual (8.4,14.7 / 40) (8.4,2.324274)N N=  distribution of x . 
 

   
Generate new SRS. Execute BOOT. Bootstrap statistics 

       
14.4   Bootstrap Confidence Intervals 
 
In this section, we demonstrate how to find a bootstrap percentile confidence interval.  We also provide 
another program that will bootstrap the correlation coefficient or the regression slope for two related 
variables. 
 
Exercise 14.28  For the data given below, calculate the 95% one-sample t confidence interval for this 
sample.  Then give a 95% bootstrap percentile confidence interval for the mean. 
 

109 123 118   99 121 134 126 114 129 123 171 124 111 125 128
154 121 123 118 106 108 112 103 125 137 121 102 135 109 115
125 132 134 126 116 105 133 111 112 118 117 105 107   

 
 
Solution.  To find the traditional confidence interval, we will use the TInterval feature from the STAT 
TESTS menu.  We enter the data into list L1, adjust the Inpt, List, and C–Level, and calculate.  We 
obtain a 95% confidence interval of (116.35, 124.81), or 120.58 ±  4.23. 
 

    
Enter data into L1. STAT TESTS item 8 Adjust settings. Output 

 
 
       Next we will execute the BOOT program with 80 resamples.  Here we enter 0 for CONF. 
INTERVAL? because we will be finding a percentile confidence interval rather than a bootstrap t 
confidence interval.  After the program executes, the resample means are stored in list L2.  By sorting this 
list, we can find a bootstrap percentile confidence interval.  
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Execute BOOT. Sort list L2. Third element in L2 78th element in L2 

 
       After the BOOT program completes, we enter the command SortA(L2 to place the resample means 
into increasing order.  Because we want a 95% percentile interval, we now eliminate the upper 2.5% and 
lower 2.5% from list L2.  And because 0.025 80×  = 2, we use the third and 78th elements of the sorted 
list as the endpoints of our percentile confidence interval.  By observing these values in the sorted L2 list, 
we find our desired interval to be (116.86, 123.3).  Using x  = 120.58 from the original sample in list L1, 
this interval can also be written as (120.58 3.72,120.58 2.72− + ). 
 
 

The BOOTCORR Program 
 

Program:BOOTCORR 
:dim(L1)→N 
:ClrList L3,L4,L5 
:Disp "1=CORRELATION","2=REG. SLOPE" 
:Input W 
:Disp "NO. OF RESAMPLES" 
:Input B 
:Disp "CONF. LEVEL" 
:Input R 
:For(I,1,B) 
:randInt(1,N,N)→L6 
:For(J,1,N) 
:L1(L6(J))→L4(J) 
:L2(L6(J))→L5(J) 
:End 
:LinReg(ax+b) L4,L5 
:If W=1 
:Then 
:r→L‹(I) 
:Else 
:a→L‹(I) 
:End 
:End 
:LinReg(ax+b) L1,L2 
:If W=1 
:Then 
:r→X 

 
:Else 
:a→X 
:End 
:ClrList L4,L5,L6 
:1-Var Stats L3 
:"tcdf(0,X,N-1)"→Y1 
:solve(Y1-R/2,X,2)→Q 
:ClrHome 
:If W=1 
:Then 
:Disp "SAMPLE CORR." 
:Else 
:Disp "REG. SLOPE" 
:End 
:Disp X 
:Disp "BOOT SE" 
:Disp Sx 
:Output(6,2,"CONF. INTERVAL") 
:If W=1 
:Then 
:Output(7,2,max(–1,X-Q*Sx)) 
:Output(8,2,min(X+Q*Sx,1)) 
:Else 
:Output(7,2,X-Q*Sx) 
:Output(8,2,X+Q*Sx) 
:End 
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       The BOOTCORR program can be used to bootstrap the correlation coefficient or the regression 
slope for paired sample data.  Before executing the program, enter the random sample data into lists L1 
and L2.  When prompted, enter 1 to bootstrap the correlation coefficient or enter 2 to bootstrap the 
regression slope.  Then enter the desired number of resamples and the confidence level.  The resampled 
statistics are stored in list L3, and the statistic of the original sample data is displayed along with the 
bootstrap standard error and the confidence interval. 
 
 
Exercise 14.43  The following table gives the 2002 salaries and career batting averages for 50 randomly 
selected MLB players (excluding pitchers). 
 

Playe
r 

Salary Avg Player Salary Avg Player Salary Avg 

1. $9,500,000 0.269 18. $3,450,000 0.242 35. $630,000 0.324 
2. $8,000,000 0.282 19. $3,150,000 0.273 36. $600,000 0.200 
3. $7,333,333 0.327 20. $3,000,000 0.250 37. $500,000 0.214 
4. $7,250,000 0.259 21. $2,500,000 0.208 38. $325,000 0.262 
5. $7,166,667 0.240 22. $2,400,000 0.306 39. $320,000 0.207 
6. $7,086,668 0.270 23. $2,250,000 0.235 40. $305,000 0.233 
7. $6,375,000 0.253 24. $2,125,000 0.277 41. $285,000 0.259 
8. $6,250,000 0.238 25. $2,100,000 0.227 42. $232,500 0.250 
9. $6,200,000 0.300 26. $1,800,000 0.307 43. $227,500 0.278 

10. $6,000,000 0.247 27. $1,500,000 0.276 44. $221,000 0.237 
11. $5,825,000 0.213 28. $1,087,500 0.216 45. $220,650 0.235 
12. $5,625,000 0.238 29. $1,000,000 0.289 46. $220,000 0.243 
13. $5,000,000 0.245 30. $950,000 0.237 47. $217,500 0.297 
14. $4,900,000 0.276 31. $800,000 0.202 48. $202,000 0.333 
15. $4,500,000 0.268 32. $750,000 0.344 49. $202,000 0.301 
16. $4,000,000 0.221 33. $720,000 0.185 50. $200,000 0.224 
17. $3,625,000 0.301 34. $675,000 0.234    

 
(a)  Calculate the sample correlation between salary and average. 
(b)  Bootstrap the correlation and give a 95% confidence interval for the correlation. 
(c) Calculate the least-squares regression line to predict average from salary.  Give the traditional 95% t 
confidence interval for the slope of the regression line. 
(d)  Bootstrap the regression model.  Give a 95% bootstrap t confidence interval and a 95% bootstrap 
percentile confidence interval for the regression slope. 
 
Solution.  (a) and (c)  We can find the sample correlation, least-squares regression line, and traditional 
confidence interval for the slope using techniques from Chapter 10.  First, we enter the data into lists, say 
lists L1 and L2.  Next, we use the LinReg(a+bx) command (item 8 from the STAT CALC menu) and 
enter the command LinReg(a+bx) L1,L2.  We obtain a sample correlation of r ≈  0.1067575.  The 
regression line is given as 90.25291 1.4769 10y x−= + × .  Thus, we see that the slope appears to be 0. 
 

   
Enter data in L1, L2. STAT CALC item 8 Enter the command.Output 
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       We can find a confidence interval for the slope 
using the REG1 program.  After running the program, 
we find a 95% t  confidence interval for the slope of the 
regression line to be ( 92.51496 10−− × , 

95.46875 10−× ).    
 
(b) and (d)  We now execute the BOOTCORR program twice using 40 resamples each time.  In the first 
running, we enter 1 to bootstrap the correlation.  In the second running, we enter 2 to bootstrap the 
regression slope.   
 

                
 
       In the first running, we obtain a 95% bootstrap interval for the correlation of (–0.0952, 0.3087).  In 
the second running, we obtain a 95% bootstrap interval for the regression slope of 
(

92.17142 10−− × , 95.12521 10−× ). 
       The 40 resample regression slopes are stored in list L3 after option 2 of the BOOTCORR program 
ends.  So next, we enter the command SortA(L3) to place the list increasing order.  Because  
0.025 40 1× = , the endpoints of the 95% percentile confidence interval are the second and 39th elements 
of the sorted list.  The interval here is ( 92.0174 10−− × , 94.74556 10−× ). 
 

   
Sort list L3. Second element in L3 39th element in L3 

 
         
 
14.5   Significance Testing Using Permutation Tests 
 
We conclude this chapter with two programs that will simulate some of the bootstrap permutation tests.  
The BOOTTEST program performs a permutation test for the difference in means and the BTPRTEST 
program performs a permutation test for either the difference in paired means or for the correlation.  We 
note that for large samples and many resamples, the programs will take several minutes to execute. 
       Before executing the BOOTTEST program, enter data from the first population into list L1 and enter 
data from the second population into list L2.  When prompted, enter 1, 2, or 3 to designate the desired 
alternative 1 2µ µ< , 1 2µ µ> , or 1 2µ µ≠ .  The resampled differences in permuted mean are ordered and 
then stored in list L3.  The program displays the difference in the original sample means 1 2x x−  and the 
P-value. 
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The BOOTTEST Program 
 

Program:BOOTTEST 
:Disp "1 = ALT. <","2 = ALT. >","3 = ALT. ≠ " 
:Input C 
:Disp "NO. OF RESAMPLES" 
:Input B 
:dim(L1)→N 
:dim(L2)→M 
:augment(L1,L2)→L1 
:ClrList L3 
:For(S,1,B) 
:ClrList L6 
:seq(J,J,1,N+M)→L4 
:For(I,1,M) 
:ClrList L5 
:randInt(1,N+M-I+1)→A 
:L4(A)→L6(I) 
:1→K 
:While K<A 
:L4(K)→L5(K) 
:1+K→K 
:End 
:A→K 
:While K ≤ (N+M-I) 
:L4(K+1)→L5(K) 
:1+K→K 
:End 
:L5→L4 
:End 
:sum(seq(L1(L5(J)),J,1,N))/N→X 
:sum(seq(L1(L6(J)),J,1,M))/M→Y 
:X-Y→L3(S) 
:End 

 
:ClrList L4 
:seq(L1(I),I,1,N)→L1 
:mean(L1)→X 
:mean(L2)→Y 
:SortA(L3) 
:X-Y+1→L‹(B+1) 
:0→K 
:While L3(K+1)<(X-Y) 
:K+1→K 
:End 
:K/B→P 
:While L3(K+1) ≤ (X-Y) 
:K+1→K 
:End 
:(B-K)/B→Q 
:seq(L3(I),I,1,B)→L3 
:ClrHome 
:Disp "DIFF IN MEANS" 
:Disp X-Y 
:Disp "P VALUE" 
:If C=1 
:Then 
:Disp P 
:Else 
:If C=2 
:Then 
:Disp Q 
:Else 
:Disp 2*min(P,Q) 
:End 
:End 

 
 
Exercise 14.48  A fast food restaurant customer complains that people 60 years old or older are given 
fewer French fries than people under 60.  The owner responds by gathering data without knowledge of the 
employees.  Below are the data on the weight of French fries (in grams) from random samples of the two 
groups of customers.  Perform a permutation test using an appropriate alternative hypothesis and give the 
P-value. 
 

Age < 60: 75 77 80 69 73 76 78 74 75 81 
Age _ 60: 68 74 77 71 73 75 80 77 78 72 
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Solution.  We let 1µ  be the average weight of French fries served to customers under age 60, and let 2µ  
be the average weight served to customers age 60 or older.  We shall test 0H : 1µ = 2µ  with the 
alternative aH : 1µ > 2µ . 
       First, we enter the sample weights for the under age 60 customers into list L1 and the weights for the 
other group into list L2.  Then we execute the BOOTTEST program by entering 2 to designate the 
alternative 1µ > 2µ .  Below are the results from 50 resamples. 
        

   
Enter data into L1 and L2. Execute BOOTTEST. Output 

         
       The 50 resampled differences in permuted mean are stored in list L3.  The difference in the original 
sample means is 1 2x x−  = 1.3 and 22% of the means in L3 are greater than 1.3.  Based on this sample of 
permutations, if 1µ = 2µ , then there would be about a 22% chance of 1 2x x−  being as high as 1.3 with 
samples of these sizes.  This P -value of 0.22 does not provide enough evidence to reject 0H . 
 
       Using the 2–SampTTest feature, we see that the 
traditional two-sample t test gives a P-value of 0.21243 
and leads us to the same conclusion. 

   
 
 

Permutation Test for Paired Data 
 
When we have paired sample data, such as “before and after” measurements, then we often consider the 
differences in measurements as one sample.  The hypothesis test 0H : 1µ = 2µ  then becomes 0H : 1µ − 2µ  
= 0 and may be tested with this one sample using a traditional t test or with many resamples using the 
permutation test.  The BTPRTEST program may be used for this permutation test.  It also may be used to 
test whether the correlation equals 0. 
       Before executing the BTPRTEST program, enter the data into lists L1 and L2.  When prompted, 
enter 1 or 2 to designate the enter desired test, then enter 1, 2, or 3 to designate the desired alternative.  
The resampled permuted pair differences in mean (or correlation) are ordered and stored in list L3.  The 
statistic from the original paired sample is displayed along with the P-value of the permutation test. 

 
 

Exercise 14.64  Below is the data from Exercise 7.27 that gives the total body bone mineral content of 
eight subjects as measured by two different X-ray machine operators.  Perform a matched pairs 
permutation test whether the two operators have the same mean. 
 

 Subject 
Operator 1 2 3 4 5 6 7 8 

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286 
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304 
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The BTPRTEST Program 
Program:BTPRTEST 
:Disp "1 = PAIRED MEAN","2 = CORRELATION" 
:Input T 
:ClrHome 
:Disp "1 = ALT. <","2 = ALT. >","3 = ALT. ≠ " 
:Input C 
:Disp "NO. OF RESAMPLES" 
:Input B 
:dim(L1)→N 
:ClrList L3 
:For(I,1,B) 
:ClrList L5,L6 
:If T=2 
:Then 
:L1→L5 
:randInt(1,N,N)→L4 
:For(J,1,N) 
:L2(L4(J))→L6(J) 
:End 
:LinReg(ax+b) L5,L6 
:r→L3(I) 
:Else 
:For(J,1,N) 
:randInt(0,1)→A 
:If A=0 
:Then 
:L1(J)→L5(J) 
:L2(J)→L6(J) 
:Else 
:L1(J)→L6(J) 
:L2(J)→L5(J) 
:End 
:End 
:If T=1 
:Then 
:mean(L5)-mean(L6)→L3(I) 
:End 
:End 
:If T=1 

 
:Then 
:mean(L1)-mean(L2)→X 
:Else 
:LinReg(ax+b) L1,L2 
:r→X 
:End 
:SortA(L3) 
:X+1→L‹(B+1) 
:0→K 
:While L3(K+1)<X 
:K+1→K 
:End 
:K/B→P 
:While L3(K+1) ≤ X 
:K+1→K 
:End 
:(B-K)/B→Q 
:seq(L3(I),I,1,B)→L3 
:ClrHome 
:If T=1 
:Then 
:Disp "DIFF. IN MEANS" 
:Else 
:Disp "SAMPLE CORR." 
:End 
:Disp X 
:Disp "P VALUE" 
:If C=1 
:Then 
:Disp P 
:Else 
:If C=2 
:Then 
:Disp Q 
:Else 
:Disp 2*min(P,Q) 
:End 
:End 
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Solution.  We let 1µ  be the average measurement from Operator 1 and let 2µ  be the average 
measurement from Operator 2.  We shall test 0H : 1µ = 2µ   with the alternative aH : 1µ ≠ 2µ . 
       First, we enter the measurements into lists L1 and L2.  Then we execute the BTPRTEST program by 
entering 1 to designate a paired mean, and then entering 3 for the alternative 1µ ≠ 2µ .  Next, we display 
the results from 50 resamples. 
 

    
Enter data in L1, L2. BTPRTEST option 1 Execute program. Output 

 
       The 50 resampled permuted pair differences in mean are stored in list L3.  The difference in the 
original sample means is 1 2x x−  = –0.0015 and 68%/2 = 34% of the means in L3 are less than –0.0015.  
This large P-value means that we do not have significant evidence to argue that there is a difference in the 
operator’s mean measurement. 
        
 
Exercise 14.54   Use the data from Table 14.3, given previously in Exercise 14.43, to test whether the 
correlation between salary and batting average is greater than 0. 
 
Solution.  First, we enter the data into lists L1 and L2.  Then to test the hypothesis 0H : ρ  = 0  with 
alternative aH : ρ  > 0, we execute option 2 of the BTPRTEST program using the second alternative 
with 50 resamples. 
 

    
Enter data in L1, L2. BTPRTEST option 2 Execute program. Output 

 
       Upon running the program, the 50 resample correlations are stored in list L3.  The sample correlation 
is r ≈  0.1067575.  In this case, 15 of the resample correlations were greater than r, which gives us a one-
sided P-value of 0.30.  Thus, we do not have significant evidence to reject 0H  with this sample based 
upon 50 resamples.  Our P-value of 0.30 compares favorably with the P-value of 0.23 obtained with the 
traditional linear regression t test. 
 

         
 
 



 



 
 
 

CHAPTER 

15 

 
 
 

 
 
 
 

Nonparametric  
Tests  

 
15.1
15.2
15.3

The Wilcoxon Rank Sum Test 
The Wilcoxon Signed Rank Test    
The Kruskal-Wallace Test 

 
 
Introduction 
 
In this chapter, we provide some supplementary programs for performing several nonparametric 
hypothesis tests. 
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15.1   The Wilcoxon Rank Sum Test 
 
We first provide the program RANKSUM to perform the Wilcoxon rank sum test on data from two 
populations.  To execute the program, we must enter the data into lists L1 and L2.  The program sorts 
each list, then merges and sorts the lists into list L3.  Then it stores the rank of each measurement in L3 
next to it in list L4.  All sequences of ties are assigned an average rank.   
       The Wilcoxon test statistic W is the sum of the ranks from L1.  Assuming that the two populations 
have the same continuous distribution (and no ties occur), then W has a mean and standard deviation 
given by 
 

1( 1)
2

n Nµ +
=   and  1 2 ( 1)

12
n n Nσ +

=  

 
where 1n  is the sample size from L1, 2n  is the sample size from L2, and N = 1n  + 

2n .   
       We test the null hypothesis 0H : no difference in distributions.  A one-sided alternative is aH : the first 
population yields higher measurements.  We use this alternative if we expect or see that W is much higher 
sum than its expected sum of ranks µ .  In this case, the P-value is given by a normal approximation.  We 
let X ~ N( µ ,σ ) and compute the right-tail ( )P X W≥  (using continuity correction if W is an integer).   
       If we expect or see that W is the much lower sum than its expected sum of ranks µ , then we should 
use the alternative aH :  first population yields lower measurements.  In this case, the P-value is given by 
the left-tail ( )P X W≤ , again using continuity correction if needed.  
       If the two sums of ranks are close, then we could use a two-sided alternative aH :  there is a 
difference in distributions.  In this case, the P-value is given by twice the smallest tail value: 2 ( )P X W≥  
if W > µ , or 2 ( )P X W≤  if W < µ . 
       The RANKSUM program displays the expected sum of ranks from the first list and the actual sums 
of the ranks from L1 and L2.  It also displays the smallest tail value created by the test statistic.  That is, it 
displays ( )P X W≥  if W > µ , and it displays ( )P X W≤  if W < µ .  Conclusions for any alternative 
then can be drawn from this value.  We note that if there are ties, then the validity of this test is 
questionable. 
 
 
Exercise 15.1  Below are language usage scores of kindergarten students who were classified as high 
progress readers or low progress readers.  Is there evidence that the scores of high progress readers are 
higher than those of low progress readers on Story 1?  Carry out a two-sample t test.  Then carry out the 
Wilcoxon rank sum test and compare the conclusions for each test. 
 

Child Progress Story 1 score Story 2 score 
1 high 0.55 0.80 
2 high 0.57 0.82 
3 high 0.72 0.54 
4 high 0.70 0.79 
5 high 0.84 0.89 
6 low 0.40 0.77 
7 low 0.72 0.49 
8 low 0.00 0.66 
9 low 0.36 0.28 

10 low 0.55 0.38 
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The RANKSUM Program 
 

PROGRAM:RANKSUM 
:ClrList L4 
:SortA(L1) 
:SortA(L2) 
:augment(L1,L2)→L3 
:SortA(L3) 
:dim(L1)→M 
:dim(L2)→N 
:L3→L6 
:L3(1)-1→L3(M+N+1) 
:1→B 
:1→I 
:Lbl 1 
:While I<(M+N) 
:If L3(I)<L3(I+1) 
:Then 
:B→L4(I) 
:1+I→I 
:1+B→B 
:Goto 1 
:Else 
:1→J 
:B→S 
:Lbl 2 
:While L3(I)=L3(I+J) 
:S+B+J→S 
:1+J→J 
:Goto 2 
:End 
:S/J→T 
:For(K,0,J-1) 
:T→L4(I+K) 
:End 
:I+J→I 
:B+J→B 
:Goto 1 
:End 

 
:End 
:If I=M+N 
:Then 
:M+N→L4(I) 
:End 
:1→I 
:0→S 
:0→J 
:Lbl 3 
:While I ≤ M 
:Lbl 4 
:If L1(I)=L3(I+J) 
:Then 
:S+L4(I+J)→S 
:Else 
:1+J→J 
:Goto 4 
:End 
:I+1→I 
:Goto 3 
:End 
:L6→L3 
:ClrList L6 
:(M+N)(M+N+1)/2→R 
:M*(M+N+1)/2→U 
: (M*N*(M+N+1)/12)→D 
:(abs(S-U)-.5)/D→Z 
:If int(S) ≠ S:(abs(S-U))/D→Z:End 
:0.50-normalcdf(0,Z,0,1)→P 
:Disp "EXPECTED 1ST SUM" 
:Disp .5*M*(M+N+1) 
:Disp "SUMS OF RANKS" 
:Disp {S,R-S} 
:If S=U:Disp "NO DIFFERENCE" 
:If S<U:Disp "LEFT TAIL",round(P,4) 
:If S>U:Disp "RIGHT TAIL",round(P,4) 
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Solution.  First, we enter the five low-progress Story 1 scores into L1 and the five high-progress Story 1 
scores into L2.  Then we apply the 2–SampTTest feature (item 4 from the STAT TESTS menu) to test 
the hypothesis 0H : 1µ  = 2µ  versus the alternative aH : 1µ  < 2µ .   
 

   
Enter data into L1 and L2. Calculate 2–SampTTest. Output 

 
       We obtain a t statistic of –2.06221 and a P-value of 0.044436 for the one-sided alternative.  With the 
rather small P-value, we have significant evidence to reject 0H  and say that the average score of all high-
progress readers is higher than the average score of all low-progress readers on Story 1.  For if 0H  were 
true, then there would be only a 0.044436 probability of obtaining a high-progress sample mean that is so 
much larger than the low-progress sample mean (0.676 compared to 0.406). 
       Now for the Wilcoxon rank sum test, we use 0H :  same distribution for both groups versus aH :  
high-progress readers score higher on Story 1.   
       The Wilcoxon test statistic is the sum of ranks from L1 in which we entered the low- progress scores.  
With the data entered into lists L1 and L2, we now execute the RANKSUM program, then observe the 
sorted data and ranks in lists L3 and L4.   
 

    
Execute RANKSUM. Output Highest ranks Lowest ranks 

 
       The sum of the ranks from the low-progress readers is 19, which is lower than the expected average 
of (5 11) / 2 27.5µ = × = .  According to the Wilcoxon test, if the distributions were the same, then there 
would be only be a 0.0473 probability (from the left-tail value) of the low- progress sum of ranks being so 
much smaller than the expected average of 27.5.  Therefore, we should reject 0H  in favor of the 
alternative. 
       In this case, the Wilcoxon P-value is slightly higher than the t test P-value; however, both are low 
enough to result in the same conclusion. 
 
 
Exercise 15.7  Below is a comparison of the number of tree species in unlogged plots in the rain forest of 
Borneo with the number of species in plots logged eight years earlier.  
 

Unlogged 22 18 22 20 15 21 13 13 19 13 19 15 
Logged 17 4 18 14 18 15 15 10 12    

 
       Does logging significantly reduce the mean number of species in a plot after eight years?  State the 
hypotheses, do a Wilcoxon rank sum test, and state your conclusion. 
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Solution.  We will test the hypothesis 0H : no difference in median versus the alternative aH : unlogged 
median is higher.  To do so, we first enter the unlogged measurements into list L1 and enter the logged 
measurements into list L2.  Then we execute the RANKSUM program which produces the following 
results: 
 

                
 
       We note that there are 21 measurements with 12 unlogged measurements.  If there were no difference 
in median, then we would expect the sum of ranks from L1 to be µ  = (12 × 22)/2 = 132.  But if there 
were no difference in median, then there would be only a 2.98% chance of the sum of ranks from L1 
being as high as 159.  This low P-value gives significant evidence to reject 0H  in favor of the alternative. 
 
 
15.2   The Wilcoxon Signed Rank Test 
 
Here we provide the SIGNRANK program to perform the Wilcoxon signed rank test on data sets of size 
n from two populations.  To execute the program, we must enter the data into lists L1 and L2.  The 
program will sort the absolute value of the differences L2 – L1 into list L3, but it will disregard any zero 
differences.  The population size n is decreased so as to count only the non-zero differences.  Then the 
program puts the rank of each measurement in L3 next to it in L4.  All sequences of ties are assigned an 
average rank.   
       The Wilcoxon test statistic W is the sum of the ranks from the positive differences.  Assuming that 
the two populations have the same continuous distribution (and no ties occur), then W has a mean and 
standard deviation given by 

 
( 1)

4
n nµ +

=   and  
( 1)(2 1)

24
n n nσ + +

=  

 
       We test the null hypothesis 0H : no difference in distributions.  A one-sided alternative is aH : 
second population yields higher measurements.  We use this alternative if we expect or see that W is a 
much higher sum, which means that there were more positive differences in L2 – L1.   In this case, the P-
value is given by a normal approximation.  We let ( , )X N µ σ∼  and compute the right-tail ( )P X W≥  
(using continuity correction if W is an integer). 
       If we expect or see that W is the much lower sum, then there were more negative differences.  Now 
we should use the alternative aH : second population yields lower measurements.  In this case, the P-
value is given by the left-tail ( )P X W≤ , again using continuity correction if needed. 
       If the two sums of ranks are close, we could use a two-sided alternative aH : there is a difference in 
distributions.  In this case, the P-value is given by twice the smallest tail value: 2 ( )P X W≥  if W µ> , 
or 2 ( )P X W≤  if W µ< . 
 
 



 
 
 
 
124          CHAPTER  15 
 

The SIGNRANK Program 
PROGRAM:SIGNRANK 
:ClrList L3,L4,L5 
:0→L›(1):0→L5(1):0→L3(1) 
:0→S:0→R:0→U:0→V:1→J 
:For(I,1,dim(L1),1) 
:If L2(I)-L1(I) ≠ 0 
:Then 
:abs(L2(I)-L1(I))→L3(J) 
:1+J→J 
:End:End 
:If L3(1)>0 
:Then 
:SortA(L3):dim(L3)→N 
:L3→L6:L3(1)-1→L3(N+1) 
:1→B:1→I 
:Lbl 1 
:If I<N 
:Then 
:If L3(I)<L3(I+1) 
:Then 
:B→L4(I) 
:1+I→I:1+B→B 
:Goto 1 
:Else 
:1→J:B→S 
:Lbl 2 
:If L3(I)=L3(I+J) 
:Then 
:S+B+J→S:1+J→J 
:Goto 2 
:End 
:S/J→T 
:For(K,0,J-1) 
:T→L4(I+K) 
:End 
:I+J→I:B+J→B 
:End 
:Goto 1 
:End 

:If I=N 
:Then 
:N→L4(I) 
:End 
:0→J 
:For(I,1,dim(L1)) 
:If (L2(I)-L1(I))>0 
:Then 
:1+J→J:abs((L2(I)-L1(I))→L5(J) 
:End:End 
:SortA(L5) 
:1→I:0→J 
:If L5(1)>0 
:Then 
:Lbl 3 
:While I ≤ dim(L5) 
:Lbl 4 
:If L5(I)=L3(I+J) 
:Then 
:V+L4(I+J)→V 
:Else 
:1+J→J 
:Goto 4 
:End 
:I+1→I 
:Goto 3 
:End:End 
:L6→L3:ClrList L6 
:N(N+1)/2→R:N(N+1)/4→U 
: (N(N+1)(2N+1)/24)→D 
:(abs(V-U)-.5)/D→Z 
:If int(V) ≠ V:(abs(V-U))/D→Z:End 
:0.50-normalcdf(0,Z,0,1)→P 
:Disp "EXP. + SUM" 
:Disp N*(N+1)/4 
:Disp "SUMS -,+ RANKS" 
:Disp {R-V,V} 
:If V=U:Disp "NO DIFFERENCE" 
:If V<U:Disp "LEFT TAIL",round(P,4) 
:If V>U:Disp "RIGHT TAIL",round(P,4) 
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       The SIGNRANK program displays the sums of the ranks of the negative differences and of the 
positive differences as well as the smallest tail value created by the test statistic.  That is, it displays 

( )P X W≥  if W µ> , or ( )P X W≤  if W µ< . Conclusions for any alternative can then be drawn from 
this value.  Again, we note that if there are ties, then the validity of this test is questionable. 
 
 
Exercises 15.13  Here are data for heart rates for five subjects and two treatments.   Use the Wilcoxon 
signed rank procedure to reach a conclusion about the effect of the language institute.  Show the 
assignment of ranks in the calculation of the test statistic. 
 

 Low rate Medium rate 
Subject Resting Final Resting Final 

1 60 75 63 84 
2 90 99 69 93 
3 87 93 81 96 
4 78 87 75 90 
5 84 84 90 108 

 
       Does exercise at the low rate raise heart rate significantly?  State hypotheses in terms of the median 
increase in heart rate and apply the Wilcoxon signed rank test. 
 
 
Solution.  We will test the hypothesis 0H :  For the low rate, resting and final heart rates have the same 
median versus aH :  final heart rates are higher.   
       Enter the five low rate resting heart rates into list L1 and the five low rate final heart rates into list 
L2.  The alternative means that there should be more positive differences, so that the sum of the positive 
ranks should be higher.  Therefore, the Pvalue comes from the right-tail probability created by the test 
statistic.  After the data is entered, execute the SIGNRANK program. 
 

   
Enter data into 
lists L1 and L2. 

Execute SIGNRANK. OutputAbsolute differences and signed ranks 

 
       List L3 now contains the ordered absolute values of the four non-zero differences.  Their 
corresponding (averaged) ranks are adjacent in list L4.  List L5 contains only the positive differences, 
which in this case are all four of the differences. 
       We see that the sum of the ranks of the positive differences is much higher than that of the negative 
differences.  If the medians for each rate were the same, then there would be only a 0.0502 probability of 
the sum of positive ranks being as high as 10 when expected to be 5 with the four subjects for which there 
is a difference.  The relatively low P-value provides some evidence to reject 0H  and conclude that the 
median final heart rate is higher for the low rate test. 
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Exercise 15.19  Below are the readings from Exercise 7.37 of 12 home radon detectors exposed to 105 
pCi/l of radon.  Apply the Wilcoxon signed rank test to determine if the median reading from all such 
home radon detectors differs significantly from 105.  
 

  91.9 97.8 111.4 122.3 105.4   95.0 
103.8 99.6  96.6 119.3 104.8 101.7 

 
 
Solution.  We will test the null hypothesis 0H : median = 105 versus aH : median ≠ 105.  First, we enter 
the given data into list L1 and then enter 105 twelve times into list L2.  If 0H  were true, then we would 
expect the sum of ranked positive differences of L2 – L1 to be (12 ×  13) /4 = 39.  But aH  implies that 
this sum of ranked positive differences will be either much higher than 39 or much lower than 39.  To test 
the hypotheses, we execute the SIGNRANK program after entering these data into the lists.   
 

    
Enter values into 
lists L1 and L2. 

Execute SIGNRANK. Output Absolute differences 
and signed ranks 

 
       Lists L3 and L4 will show that there were 12 non-zero differences in L2 – L1, and list L5 will show 
that eight of these were positive differences, meaning that there were eight times in which the home radon 
detector measured below 105. 
       The right-tail value is given as 0.2781; thus, the P-value for the two-sided alternative is 2 × 0.2781 = 
0.5562.  If the median home radon measurement were 105, then there would be a 0.5562 probability of 
the sum of positive ranks being as far away (in either direction) from the expected sum of 39 as the 
resulting sum of 47 is.  Thus, we do not have significant evidence to reject 0H .   
 
 
15.3   The Kruskal-Wallace Test 
 
Our next program, KRUSKAL, is for the Kruskal-Wallace test, which simultaneously compares the 
distribution of more than two populations.  We test the null hypothesis 0H : all populations have same 
distribution versus the alternative aH : measurements are systematically higher in some populations.  To 
apply the test, we draw independent SRSs of sizes 1 2, ,..., In n n  from I populations.  There are N 
observations in all.  We rank all N observations and let iR  be the sum of the ranks for the ith sample.  The 
Kruskal-Wallace statistic is 
 

2

1

12 3( 1)
( 1)

I
i
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+ ∑  

 
       When the sample sizes are large and all I  populations have the same continuous distribution, then H 
has an approximate chi-square distribution with 1I −  degrees of freedom.  When H is large, creating a 
small right-tail P-value, then we can reject the hypothesis that all populations have the same distribution. 
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The KRUSKAL Program 

 
PROGRAM:KRUSKAL 
:ClrList L3,L4,L5 
:dim([B])→L1 
:sum(seq([B](1,J),J,1,L1(2)))→L 
:1→K 
:For(J,1,L1(2)) 
:For(I,1,[B](1,J)) 
:[A](I,J)→L3(K) 
:1+K→K 
:End:End 
:SortA(L3) 
;L3→L6:L3(1)-1→L3(L+1) 
:1→B:1→I 
:Lbl 1 
:While I<(L) 
:If L3(I)<L3(I+1) 
:Then 
:B→L4(I) 
:1+I→I:1+B→B 
:Goto 1 
:Else 
:1→J:B→S 
:Lbl 2 
:While L3(I)=L3(I+J) 
:S+B+J→S:1+J→J 
:Goto 2 
:End 
:S/J→T 
:For(K,0,J-1) 
:T→L4(I+K) 
:End 
:I+J→I:B+J→B 
:Goto 1 
:End:End 

 
:If I=L 
:Then 
:L→L4(I) 
:End 
:1→K 
:Lbl 5 
:While K ≤ L1(2) 
:ClrList L2 
:For(I,1,[B](1,K)) 
:[A](I,K)→L2(I) 
:SortA(L2) 
:End 
:1→I:0→S:0→J 
:Lbl 3 
:While I ≤ [B](1,K) 
:Lbl 4 
:If L2(I)=L‹(I+J) 
:Then 
:S+L4(I+J)→S:1+I→I 
:Else 
:1+J→J 
:End 
:Goto 3 
:End 
:S→L5(K):1+K→K 
:Goto 5 
:End 
:L6→L3:ClrList L2,L6 
:12/L/(L+1)*sum(seq(L5(I)2/ 
  [B](1,I),I,1,L1(2)))-3(L+1)→W 
:1-→x2cdf(0,W,L1(2)-1)→P 
:Disp "TEST STAT",W 
:Disp "P-VALUE",P 

 
       Before executing the KRUSKAL program, use the MATRX EDIT screen to enter the data as 
columns into matrix [A] and to enter the sample sizes as a row into matrix [B].   
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Exercise 15.24  Use the Kruskal-Wallace test to see if there are significant differences in the numbers of 
insects trapped by the board colors. 
 

Board color   Insects trapped    
Lemon yellow 45 59 48 46 38 47 

White 21 12 14 17 13 17 
Green 37 32 15 25 39 41 
Blue 16 11 20 21 14 7 

 
 
Solution.  To execute the KRUSKAL program, we must use the MATRX EDIT screen to enter the data 
into matrix [A] and to enter the sample sizes into  matrix [B].  First, enter the data into the columns of the 
6 ×  4 matrix [A] as you would normally enter data into lists.  Next, enter the sample sizes into a 1 ×  4 
matrix [B].  Then execute the KRUSKAL program. 
 

    
Enter data as columns 

in matrix [A]. 
Enter sample sizes as a 

row in matrix [B]. 
KRUSKAL output Sums of ranks  

in list L5 
 
       After the program completes, view the entries in lists L3, L4, and L5.  List L3 contains the merged, 
sorted measurements, and list L4 contains their (averaged) ranks.  List L5 contains the sum of ranks from 
each type of color.  The low P-value of 0.00072 gives good evidence to reject the hypothesis that all 
colors yield the same distribution of insects trapped. 
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Introduction 
 
In this chapter, we give a brief discussion of two types of logistic regression fits.  The first type is a linear 
fit for the logarithm of the odds ratio of two population proportions.  The second type is the general 
logistic fit for several population proportions. 
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16.1   The Logistic Regression Model 
 
First, we provide a supplementary program that computes appropriate mathematical odds for a given 
probability p of an event A.  If 0.50p ≤ , then the odds against A are given as the ratio (1 ) :p p− .  If 

0.50p > , then the odds in favor of A are given as the ratio : (1 )p p− .  The probability can be entered 
either as a decimal or as a fraction.  If p is entered as a decimal, then the odds are computed after 
rounding p to four decimal places; thus some accuracy may be lost. 
 

The ODDS Program 
PROGRAM:ODDS 
:Menu("ODDS","INPUT DECIMAL", 
 1,"INPUT FRACTION",2) 
:Lbl 1 
:Disp "PROBABILITY" 
:Input P 
:round(P,4)→P 
:10000*P→A 
:10000*(1-P)→B 
:A/gcd(A,B)→N 
:B/gcd(A,B)→D 
:Goto 3 
:End 
:Lbl 2 
:Disp "PROB NUMERATOR" 

 
:Input A 
:Disp "PROB DENOMINATOR" 
:Input B 
:A/B→P 
:A/gcd(A,B-A)→N 
:(B-A)/gcd(A,B-A)→D 
:Lbl 3 
:If P>.50 
:Then 
:Disp "ODDS IN FAVOR" 
:Disp {N,D} 
:Else 
:Disp "ODDS AGAINST" 
:Disp {D,N} 

 
Exercise 16.13  In a study of 91 high-tech companies and 109 non-high-tech companies, 73 of the high-
tech companies and 75 of the non-high-tech companies offered incentive stock options to key employees. 
 
(a)  What proportion of high-tech companies offer stock options to their key employees? What are the 
odds?   
(b)  What proportion of non-high-tech companies offer stock options to their key employees? What are 
the odds?  
(c)  Find the odds ratio using the odds for the high-tech companies in the numerator. 
 
Solution.  (a)  The proportion of high-tech companies that offer stock options is simply 73/91 ≈  0.8022.  
To compute the odds, we can use the ODDS program.  After bringing up the program, enter the 
numerator value of 73 followed by the denominator value of 91.  The odds in favor are displayed as 73 to 
18.   
 

    
Execute ODDS. Output Reexecute ODDS. Output 
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(b)  For the non-high-tech companies, the proportion is 75/109 ≈  0.688.  Because 34 of these companies 
do not offer stock options, the odds are 75 : 34 that such a company does offer stock options to their key 
employees.  This result can be verified with the ODDS program. 
 
(c) The odds-in-favor ratio can be computed by simple division of the odds 
(73/18) ÷  (75/34).  Thus, the odds in favor of a high-tech company offering 
stock options are about 1.8 times more than the odds for a non-high-tech 
company. 

 
 
 
       The logistic regression model is always based on the odds in favor of an event.  It provides another 
method of studying the odds in favor ratio between two populations.  As a lead-in, we now provide a 
program that specifically computes the odds-in-favor ratio. 
 

The ODDS2 Program 
PROGRAM:ODDS2 
:Disp "1ST PROPORTION" 
:Input P 
:Disp "2ND PROPORTION" 

 
:Input R 
:Disp "ODDS RATIO" 
:Disp P/(1-P)/(R/(1-R)) 

 
 
Exercise 16.18 (c)  In a study on gender bias in textbooks, 48 out of 60 female references were “girl.”  
Also, 52 out of 132 male references were “boy.”  These two types of references were denoted as juvenile 
references.  Compute the odds ratio for comparing the female juvenile references to the male juvenile 
references.   
 
Solution.  We simply enter the data into the ODDS2 program that computes the 
ratio of odds.  We see that the odds in favor of a juvenile female response are 
more than six times the odds in favor of a juvenile male response. 

 
 
 

Model for Logistic Regression  
 
The logistic regression model is given by the equation 
 

0 1log
1

p x
p

β β
⎛ ⎞

= +⎜ ⎟−⎝ ⎠
 

 
where x  is either 1 or 0 to designate the explanatory variable.  We now provide a program that computes 
and displays the regression coefficients for the fit log(ODDS) = 0 1xb b+  as well as the odds ratio 1be . 
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The LOG1 Program 
PROGRAM:LOG1 
:Disp "1ST PROPORTION" 
:Input P 
:Disp "2ND PROPORTION" 
:Input R 
:ln(R/(1-R))→A 
:ln(P/(1-P))-A→B 
:ClrHome 

 
:Output(1,6,"A+BX") 
:Output(2,1,"A=") 
:Output(2,3,A) 
:Output(3,1,"B=") 
:Output(3,3,B) 
:Output(5,1,"ODDS RATIO") 
:Output(6,1,e^(B)) 

 
 
Example  16.4  The table below gives data on the numbers of men and women who responded “Yes” to 
being frequent binge drinkers in a survey of college students.  Find the coefficients for the logistic 
regression model and the odds ratio of men to women.   
 

Population X  n  
Men 1630 7180 

Women 1684 9916 
 
 
Solution.  We simply enter the data into the LOG1 
program to obtain log(ODDS) -1.59 0.36x≈ + .  The 
odds ratio is also displayed. 

   
 Enter proportions. Output 

 
 
16.2   Inference for Logistic Regression 
 
To compute confidence intervals for the slope 1β  and the odds ratio of the logistic regression model, we 
can use the ODDSINT program that follows.  To execute the program, separately enter the numerators 
and denominators of the two sample proportions and the desired level of confidence. 
  

The ODDSINT Program 
 

Program:ODDSINT 
:Disp "1ST NO. OF YES" 
:Input M 
:Disp "1ST SAMPLE SIZE" 
:Input P 
:Disp "2ND NO. OF YES" 
:Input N 
:Disp "2ND SAMPLE SIZE" 
:Input Q 
:Disp "CONF. LEVEL" 

:Input L 
: (1/M+1/(P-M)+1/N+1/(Q-N))→S 
:invNorm((L+1)/2,0,1)→R 
:ln(M/P/(1-M/P))-ln(N/Q/(1-N/Q))→B 
:ClrHome 
:Disp "SLOPE INTERVAL" 
:Disp {round(B-R*S,4),round(B+R*S,4)} 
:Disp "ODDS RATIO INT." 
:Disp {round(e^(B-R*S),4),  
 round(e^(B+R*S), 4)} 
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       To test the hypothesis that an odds ratio equals 1, we equivalently can test whether the logistic 
regression model coefficient 1b  equals 0.  To do so, we use the P-value given by 
 

( )1

2 2
1(1) ( / SE )bP x b≥  

  
where 

1bSE is the standard error of the coefficient 1b .  The ODDSTEST program that follows computes 
this P-value upon entering the values of the two proportions under consideration and the value of the 
standard error 

1bSE . 
 

The ODDSTEST Program 
 

Program:ODDSTEST 
:Disp "1ST PROPORTION" 
:Input P 
:Disp "2ND PROPORTION" 
:Input R 
:Disp "ST.ERROR OF B1" 
:Input S 

:ln(R/(1-R))→A 
:ln(P/(1-P))-A→B 
:(B/S)^2→Z 
:1-x2cdf(0,Z,1)→P 
:ClrHome 
:Disp "TEST STAT",Z 
:Disp "P-VALUE",P 

 
 
Exercise 16.20  In the study on gender bias in textbooks from Exercise 16.18, 48 out of 60 female 
references were “girl” and 52 out of 132 male references were “boy.”  The estimated slope is 1b  = 1.8171 
and its standard error is 0.3686.   
 
(a)  Give a 95% confidence interval for the slope. 
(b)  Calculate the X2 statistic for testing the null hypothesis that the slope is zero and give the approximate 
P -value. 
 
 
Solution.  For Part (a) we execute the ODDSINT program and for Part (b) we execute the ODDSTEST 
program.  We obtain a 95% confidence interval for the slope of {1.0946, 2.5395} that is equivalent to an 
odds ratio interval of {2.9881, 12.6736}.   
 

   
Execute ODDSINT. Output Execute ODDSTEST.Output 

 
       Because 0 is not in the slope interval and 1 is not in the odds ratio interval, we have some evidence to 
reject the null hypothesis that the slope is zero.  The X2 statistic of 24.296 yields a very low P-value of 
about 78.26 10−×  that gives significant evidence to reject the null hypothesis that the slope equals zero. 
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The Logistic Curve 
 

A general logistic curve is given by the function 
1 bx

cp
ae−=

+
.  Such a fit can be obtained with the 

Logistic command (item B) from the STAT CALC menu.  Following is an example to illustrate this fit. 
 
Example  An experiment was designed to examine how well an insecticide kills a certain type of insect.  
Find the logistic regression curve for the proportion of insects killed as a function of the insecticide 
concentration. 
 

Concentration Number of insects Number killed 
0.96 50 6 
1.33 48 16 
1.63 46 24 
2.04 49 42 
2.32 50 44 

 
 
Solution.  First, enter the data into the STAT EDIT screen with the concentrations in list L1 and the 
proportions of insects killed in list L2.  Next, enter the command Logistic L1,L2,Y1 to compute the 
regression fit and to store the equation in function Y1. 
 

    
Enter data. STAT CALC item B Logistic L1,L2,Y1 Output 

 

       We obtain a logistic regression fit of 3.369

0.97
1 182.36 xy

e−≈
+

.  If desired, we can make a scatterplot of 

the data along with the logistics regression curve. 
 

   
Adjust WINDOW. Adjust STAT PLOT. Graph. 

 
 



 
 
 

CHAPTER 

17 

 
 
 

 
 
 
 

Statistics for  
Quality: Control 

and Capability  
 
 

17.1
17.2
17.3
17.4

Processes and Statistical Process Control 
Using Control Charts 
Process Capability Indexes 
Control Charts for Sample Proportions 

 
Introduction 
 
In this chapter, we provide several programs for computing control limits, graphing control charts, and for 
computing the capability indexes of a process. 
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17.1   Statistical Process Control 
 
In this section, we provide a program that computes the upper and lower control limits and graphs the 
control charts for x  and s. 
 

The CONTRL Program 
PROGRAM:CONTRL 
:Menu("CONTRL","XBAR",1,"S",2," 
 QUIT",3) 
:Lbl 1 
:Disp "SAMPLE SIZES" 
:Input N 
:Disp "MEAN" 
:Input M 
:Disp "STANDARD DEV." 
:Input S 
:"M"→Y1 
:"M+3*S/ (N)"→Y2 
:"M-3*S/ (N)"→Y3 
:If dim(L1)>0 
:Then 
:seq(I,I,1,dim(L1))→L3 
:0→Xmin 
:dim(L1)+1→Xmax 
:Xmax→Xscl 
:min(min(L1),M-4*S/ (N))→Ymin 
:max(max(L1),M+4*S/ (N))→Ymax 
:Ymax-Ymin→Yscl 
:Plot1(xyLine,L3,L1,◦) 
:End 
:ClrHome 
:Output(1,4,"XBAR LIMITS") 
:Goto 4 
:Lbl 2 
:Disp "SAMPLE SIZES" 
:Input N 
:Disp "STANDARD DEV." 
:Input S 
:If int(N/2)=N/2 
:Then 
:((N/2-1)!)2*2^(N-2)/(N-2)!* 

 (2/π /(N-1))→C 
:Else 
:  (2π /(N-1))*(N-1)!/((N-1)/2)!  
 /((N-3)/2)!/2^(N-1)→C 
:End 
:"C*S"→Y1 
:"C*S+3S  (1-C2)"→Y2 
:"max(C*S-3S  (1-C2),0)"→Y3 
:If dim(L2)>0 
:Then 
:seq(I,I,1,dim(L2))→L3 
:0→Xmin 
:dim(L2)+1→Xmax 
:Xmax→Xscl 
:min(min(L2),C*S-4S  (1-C2)) 
 →Ymin 
:max(max(L2),C*S+4S  (1-C2))   
 →Ymax 
:Ymax-Ymin→Yscl 
:Plot1(xyLine,L3,L2,◦) 
:End 
:ClrHome 
:Output(1,4,"S LIMITS") 
:Lbl 4 
:PlotsOff  
:PlotsOn 1 
:AxesOff 
:Output(3,1,"UCL") 
:Output(3,5,Y2) 
:Output(4,1," CL") 
:Output(4,5,Y1) 
:Output(5,1,"LCL") 
:Output(5,5,Y3) 
:Lbl 3 
:Stop 
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Exercise 17.15  A manufacturer checks the control of a milling process by measuring a sample of five 
consecutive items during each hour’s production.  The target width of a slot cut by the milling machine is 
µ  = 0.8750 in. with a target standard deviation of 0.0012 in.  What are the centerline and control limits 
for an s chart?  For an x  chart? 
 
Solution.  Bring up the CONTRL program and enter either 1 or 2 for the desired variable’s control limits.  
Then enter the sample size of 5 and the target statistics.  The centerline and control limits are then 
displayed. 
 

   
Select option 2 of CONTRL. Input parameters. Output 

 

   
Select option 1 of CONTRL. Input parameters. Output 

 
                 

 
       If we have the values of x  and s from various samples, then we also can use the program to display 
the control charts.  To do so, always enter the values of x  into list L1 and enter the values of s into list 
L2.  After executing the CONTRL program, press GRAPH to see the control chart. 
 
 
Example 17.4  The following mesh tension data, from Table 17.1 in the textbook, gives the sample mean 
and sample deviation from 20 different samples of size 4. 
 

Sample 
mean 

Standard 
deviation 

 Sample 
mean 

Standard 
deviation 

253.4 21.8  253.2 16.3 
285.4 33.0  287.9 79.7 
255.3 45.7  319.5 27.1 
260.8 34.4  256.8 21.0 
272.7 42.5  261.8 33.0 
245.2 42.8  271.5 32.7 
265.2 17.0  272.9 25.6 
265.6 15.0  297.6 36.5 
278.5 44.9  315.7 40.7 
285.4 42.5  296.9 38.8 

 
       The target mean tension is µ  = 275 mV with a target standard deviation of 43 mV.  Find the 
centerline and control limits for x  and for s.  Graph the control charts for each. 
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Solution.  Enter the sample means into list L1 and the standard deviations into list L2.  Then execute the 
CONTRL program for the desired variable to obtain the control limits, and press GRAPH to see the 
control chart.  If desired, press TRACE and scroll right to see the individual points. 
 

    
Enter means in L1 and 

deviations in L2. 
Execute option 1  

of CONTRL. 
Output Graph and trace. 

 

    
Execute option 1  

of CONTRL. 
Re-enter parameters. Output Graph and trace. 

 
 

17.2   Using Control Charts 
 
We now provide a variation of the CONTRL program that will compute the upper and lower control 
limits and graph the control charts for x  or s based on past data. 
 
Example 17.10  The following data, from Table 17.5 in the textbook, gives the mean and standard 
deviation of elastomer viscosity from each of 24 samples of size 4. 
 

Sample x  s  Sample x  s  
1 49.750 2.684 13 47.875 1.118 
2 49.375 0.895 14 48.250 0.895 
3 50.250 0.895 15 47.625 0.671 
4 49.875 1.118 16 47.375 0.671 
5 47.250 0.671 17 50.250 1.566 
6 45.000 2.684 18 47.000 0.895 
7 48.375 0.671 19 47.000 0.447 
8 48.500 0.447 20 49.625 1.118 
9 48.500 0.447 21 49.875 0.447 

10 46.250 1.566 22 47.625 1.118 
11 49.000 0.895 23 49.750 0.671 
12 48.125 0.671 24 48.625 0.895 

 
(a)  Find the centerline and control limits for x  and for s based on this past data.  Graph the control charts 
for each. 
(b)  Remove the two values of s that are out of control and re-evaluate the control limits for s based on the 
remaining data. 
(c)  Remove the corresponding two values of x  from the samples that were removed in (b) and re-
evaluate the control limits for x  based on the remaining data. 
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The CONTRL2 Program 
 

Program:CONTRL2 
:Disp "SAMPLE SIZES" 
:Input N 
:If int(N/2)=N/2 
:Then 
:((N/2-1)!)2*2^(N-2)/(N-2)!  
 *  (2/π /(N-1))→C 
:Else 
:  (2π _/(N-1))*(N-1)!/((N-1)/2)! 
 /((N-3)/2)!/2^(N-1)→C 
:End 
:Disp "1=XBAR, 2=S" 
:Input W 
:If W=1 
:Then 
:2-Var Stats L1,L2 
: x→M 
: y /C→S 
:"M"→Y1 
:"M+3*S/  (N)"→Y2 
:"M-3*S/  (N)"→Y3 
:seq(I,I,1,dim(L1))→L3 
:0→Xmin 
:dim(L1)+1→Xmax 
:Xmax→Xscl 
:min(min(L1),M-4*S/  (N))→Ymin 
:max(max(L1),M+4*S/  (N))→Ymax 
:Ymax-Ymin→Yscl 
:Plot1(xyLine,L3,L1,◦) 
:ClrHome 
:Output(1,4,"XBAR LIMITS") 

 
:Goto 4 
:Else 
:1-Var Stats L2 
: x /C→S 
:"C*S"→Y1 
:"C*S+3S  (1-C2)"→Y2 
:"max(C*S-3S  (1-C2),0)"→Y3 
:seq(I,I,1,dim(L2))→L3 
:0→Xmin 
:dim(L2)+1→Xmax 
:Xmax→Xscl 
:min(min(L2),C*S-4S  (1-C2)) 
 →Ymin 
:max(max(L2),C*S+4S  (1-C2)) 
 →Ymax 
:Ymax-Ymin→Yscl 
:Plot1(xyLine,L3,L2,◦) 
:ClrHome 
:Output(1,4,"S LIMITS") 
:End 
:Lbl 4 
:PlotsOff  
:PlotsOn 1 
:AxesOff 
:Output(3,1,"UCL") 
:Output(3,5,Y2) 
:Output(4,1," CL") 
:Output(4,5,Y1) 
:Output(5,1,"LCL") 
:Output(5,5,Y3) 

 
       We note that data sets of equal sizes must be entered into lists L1 and L2 in order to obtain the 
control limits for x .  However, only the values of the sample deviations need to be entered into list L2 in 
order to compute the control limits for s. 
 
 
Solution.  (a)  First, enter the sample means into list L1 and the sample deviations into list L2, then bring 
up the CONTRL2 program.  Enter 4 for the sample size, then enter 1 when prompted to calculate the 
control limits for x  based on this past data.  Press GRAPH to see the control chart.  Then re-execute the 
program, but enter 2 when prompted to calculate the control limits for s. 
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Enter means in L1 and 

deviations in L2. 
Execute option 1  

of CONTRL2. 
Output Graph. 

 

   
Execute option 2  

of CONTRL2. 
Output Graph. 

 
(b)  Because the upper control limit for s is 2.28, the values of s from the first and sixth samples are out of 
control.  We now delete these two values, that are both 2.684, from list L2 and re-execute the CONTRL2 
program.   
 

    
Delete first and sixth 

entry in L2. 
Execute option 2  

of CONTRL2. 
Output Graph. 

 
(c)  We now delete the values of x  from the first and sixth samples from list L1, then re-execute option 1 
of the CONTRL2 program to find the new control limits for x . 
 

                
 
Exercise 17.42  The following data give Joe’s weight, measured once each week, for the first 16 weeks 
after his injury.   
 

Week 1 2 3 4 5 6 7 8 
Weight 168.7 167.6 165.8 167.5 165.3 163.4 163.0 165.5 

 
Week 9 10 11 12 13 14 15 16 
Weight 162.6 160.8 162.3 162.7 160.9 161.3 162.1 161.0 

 
       Joe has a target of µ  = 162 pounds for his weight.  The short-term variation is estimated to be about 
σ  = 1.3 pounds.  Make a control chart for his measurements using control limits 2µ σ± . 
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Solution.  Simply make a time plot of the measurements together with graphs of the lines y µ=  and 

2y µ σ= ± .  To do so, enter the weeks into list L1 and the weights into list L2, then adjust the STAT 
PLOT settings for a scatterplot of L1 versus L2.  Next, enter the functions Y1 = 162+2* 1.3, Y2 = 162, 
and Y3 = 162–2* 1.3 into the Y= screen, and adjust the WINDOW settings so that the X range includes 
all weeks and the Y range includes all weights as well as the upper and lower control limits.  Then pres 
GRAPH. 
 

    
Enter data. Enter control limits. Adjust WINDOW. Graph. 

 
 
17.3   Process Capability Indexes 
 
In this section, we provide a program to compute the capability indexes.  The program can be used when 
the parameters are given or when data is given in a list. 

 
 

The CAPIND Program 
 

PROGRAM:CAPIND 
:Disp "LSL" 
:Input L 
:Disp "USL" 
:Input U 
:Disp "1=STATS, 2=LIST" 
:Input W 
:If W=1 
:Then 
:Disp "MEAN" 
:Input M 
:Disp "STANDARD DEV." 
:Input S 
:Goto 1 
:Else 
:2-Var Stats L1,L2 
: x→M 

 
: y  →S 
:End 
:Lbl 1 
:(U-L)/(6S)→C 
:If M≤L or M≥U 
:Then 
:0→D 
:Else 
:min(M-L,U-M)/(3S)→D 
:End 
:ClrHome 
:Output(1,4,"CAP.INDEXES") 
:Output(3,2,"Cp") 
:Output(3,5,C) 
:Output(5,1,"Cpk") 
:Output(5,5,D) 
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Exercise 17.50   Below are data on a hospital’s losses for 120 DRG 209 patients collected as 15 monthly 
samples of eight patients each.  The hospital has determined that suitable specification limits for its loss in 
treating one such patient are LSL = $4000 and USL = $8000.  Estimate the percent of losses that meet the 
specifications.  Estimate pC  and pkC . 
 

Sample x  s  Sample x  s  
1 6360.6   521.7 9 6479.0   704.7 
2 6603.6   817.1 10 6175.1   690.5 
3 6319.8   749.1 11 6132.4 1128.6 
4 6556.9   736.5 12 6237.9   596.6 
5 6653.2   503.7 13 6828.0   879.8 
6 6465.8 1034.3 14 5925.5   667.8 
7 6609.2 1104.0 15 6838.9   819.5 
8 6450.6 1033.0    

 
 
Solution.  First, enter the sample means into list L1 and the sample deviations into list L2.  Then enter the 

command 2–Var Stats L1,L2 to compute x  and s.  We see that x  ≈  6442.43 and s ≈  799.127 (from the 
y  output).   

 

    
Enter means in L1 and 

deviations in L2. 
Compute 2-Sample 

statistics. x ≈ 6442.43 s ≈ 799.127 

 
       Next, use the normalcdf( command from the DISTR menu to compute (4000 8000)P X≤ ≤  for 

(6442.43,799.127)X N∼ .  We find that about 97.32% of losses meet the specifications. Lastly, bring 
up the CAPIND program.  Enter the LSL of 4000 and the USL of 8000, then enter 2 when prompted for 
LIST to output the capability index approximations.  
 

   
Compute  

(4000 8000)P X≤ ≤ . 
Execute option 2  

of CAPIND. 
Output 

 
Exercise 17.51  The dimension of the opening of a clip has specifications 15 ±  0.5 millimeters.  The 
production of the clip is monitored by x  and s charts based on samples of five consecutive clips each 
hour.  The 200 individual measurements from the past week’s 40 samples have x  = 14.99 mm and s = 
0.2239 mm. 
 
(a)  What percent of clip openings will meet specifications if the process remains in its current state?  (b)  
Estimate the capability index pkC . 
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Solution.  (a)  We must compute (15 0.5 15 0.5)P X− ≤ ≤ + for  

(14.99,0.2239)X N∼ .  Using the normalcdf( command, we find that about 
97.43% of clip openings will meet specifications if production remains in its 
current state. 

 
(b)  To estimate pkC , we shall use the CAPIND program.  Bring up the program and enter the LSL of 
14.5 and the USL of 15.5, then enter 1 when prompted for STATS.  Enter the mean and standard 
deviation to receive the output.  We find that pkC  ≈  0.7295. 
 

                 
 
 
17.4   Control Charts for Sample Proportions 
 
We conclude this chapter with a program to compute the control limits for sample proportions.  The 
program can be used with summary statistics or when a list of data is given. 
 

The CONTRLP Program 
PROGRAM:CONTRLP 
:Menu("CONTRLP","STATS",1,"LIST",2," 
 QUIT",3) 
:Lbl 1 
:Disp "TOTAL SUCCESSES" 
:Input T 
:Disp "NO. OF STAGES" 
:Input M 
:Disp "NO. PER STAGE" 
:Input N 
:T/(M*N)→P 
:Goto 4 
:Lbl 2 
:1-Var Stats L2 
: x→N 
:sum(seq(L1(I),I,1,dim(L1)))/sum( 
 seq(L2(I),I,1,dim(L2)))→P 
:L1/L2→L3 
:seq(I,I,1,dim(L1))→L4 
:Lbl 4 
:"P"→Y1 
:"min(P+3* (P(1-P)/N),1)"→Y2 
:"max(P-3* (P(1-P)/N),0)"→Y3 
:0→Xmin 

 
:dim(L1)+1→Xmax 
:Xmax→Xscl 
:min(Y3,min(L3))-.01→Ymin 
:max(Y2,max(L3))+.01→Ymax 
:1→Yscl 
:Plot1(xyLine,L4,L3,◦) 
:PlotsOff  
:PlotsOn 1 
:AxesOff 
:ClrHome 
:Output(1,5,"P LIMITS") 
:Output(3,1,"PBAR") 
:Output(3,6,P) 
:Output(4,1,"NBAR") 
:Output(4,6,N) 
:Output(6,1,"UCL") 
:Output(6,5,Y2) 
:Output(7,1," CL") 
:Output(7,5,Y1) 
:Output(8,1,"LCL") 
:Output(8,5,Y3) 
:Lbl 3 
:Stop 
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Exercise 17.59  Over the last ten months, an average of 2875 invoices per month have been received with 
only a total of 960 remaining unpaid after 30 days.  Find p .  Give the centerline and control limits for a p 
chart. 
 
Solution.  Bring up the CONTRLP program and press 1 for STATS.  Enter the values of 960 for total 
“successes,” 10 for the number of “stages,” and 2875 for the number per stage.  We find that p  ≈  0.0334 
with an LCL of 0.02334 and a UCL of 0.04344. 
 

   
CONTRLP option 1 Enter parameters. Output 

 
                 

Exercise 17.63  Here are data on the total number of absentees among eighth graders at an urban school 
district. 
 

Month Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. 
 
Students 

 
911 

 
947 

 
939 

 
942 

 
918 

 
920 

 
931 

 
925 

 
902 

 
883 

 
Absent 

 
291 

 
349 

 
364 

 
335 

 
301 

 
322 

 
344 

 
324 

 
303 

 
344 

 
(a)  Find p  and n .  (b)  Make a p chart using control limits based on n  students each month. 
 
Solution.  (a)  First, enter the numbers of absentees (“successes”) into list L1 and the numbers of students 
into list L2.  Next, execute option 2 of the CONTRLP program.  We find that p  ≈  0.3555 and n  = 
921.8.  (b)  After executing the program, the individual monthly proportions are stored in list L3.  Press 
GRAPH to see the p chart that has an LCL of 0.3082 and a UCL of 0.4028. 
 

   
Enter data into 
lists L1 and L2. 

Execute CONTRLP 
option 2. 

OutputGraph. 

 
          



Index of Programs 
Programs can be downloaded at 

http://www.wku.edu/~david.neal/ips5e/ 
 
ANOVA1 (page 93) displays the overall sample mean, the pooled sample deviation, the mean square 
error for groups MSG, the mean square for error MSE, the R2 coefficient, the F-statistic, and the P-value 
of the ANOVA test for equality of means when data is entered as summary statistics.  Before executing 
the program, enter the sample sizes into list L1, the sample means into list L2, and the sample deviations 
into list L3. 
 
ANOVA2 (page 99) displays the P-values for two-way analysis of variance.  For one observation per cell, 
enter the data into matrix [A] before executing the program.  For c observations per cell, enter the means 
into matrix [A] and the standard deviations into matrix [B].  The program also stores the marginal means 
for the rows and columns into lists L2 and L4.  The overall mean is stored as the first value in list L5.  
The remainder of L5 are the values SSA, SSB, and SSE. 
 
ANPOWER (page 96) computes the Winer approximation of the power of the ANOVA test under the 
alternative aH  that the true population means are 1µ , 2µ , . . ., Iµ .  Before executing the program, enter 
the successive sample sizes 1n , . . . , In  into list L1 and the alternative population means into list L2.  
After the level of significance and the guessed standard deviation are entered in the running of the 
program, the approximate power is displayed along with the values of F*, DFG, DFE, and the 
noncentrality parameter λ . 
 
BAYES (page 32) computes the total probability ( )P C  and conditional probabilities associated with 
Bayes’ rule.  Before executing the program, enter values for ( )iP A  into list L1 and the conditional 

probabilities ( )iP C A  into list L2.  The program displays ( )P C , stores ( )iP C A∩  in list L3, stores 

( )iP A C  in list L4, stores ( )iP A C′  in list L5, and stores ( )iP C A  in list L6. 
 
BOOT (page 104) performs resampling on a random sample that has been entered into list L1.  If  a 
bootstrap confidence interval for the statistic is desired, enter 1 for CONF. INTERVAL? when 
prompted; otherwise, enter 0.  The program takes resamples from the entered random sample and enters 
their means into list L2.  The mean of all resamples, the bootstrap standard error, and the confidence 
interval (if specified) are displayed. 
 
BOOTCORR (page 111) performs the bootstrap procedure on the correlation coefficient or the 
regression slope for paired sample data that has been entered into lists L1 and L2.  When prompted, enter 
1 if you want to bootstrap the correlation coefficient or enter 2 if you want to bootstrap the regression 
slope.  The resampled statistics are stored in list L3.  The statistic of the original sample data is displayed 
along with the bootstrap standard error and the confidence interval. 
 
BOOTPAIR (page 108) computes a bootstrap t confidence interval for the difference in means based on 
random samples that have been entered into lists L1 and L2.  The resampled differences in mean are 
stored in list L3.  The difference of the original sample averages is displayed along with the bootstrap 
standard error and the confidence interval.  
 
BOOTTEST (page 114) performs a permutation test for the difference in means.  Before executing, enter 
data from the first population into list L1 and enter data from the second population into list L2.  When 
prompted, enter 1, 2, or 3 to designate the desired alternative.  The resampled differences in permuted 
mean are ordered and then stored in list L3.  The program displays the difference of the original sample 
means and the P-value. 
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BOOTTRIM (page 107) computes a bootstrap t confidence interval for a trimmed mean on a random 
sample that has been entered into list L1. When prompted, enter the desired number of resamples, the 
decimal amount to be trimmed at each end, and the desired confidence level.  The program takes 
resamples from the entered random sample and enters their trimmed means into list L2.  The trimmed 
mean of the original sample, the trimmed bootstrap standard error, and the confidence interval are 
displayed. 
 
BTPRTEST (page 116) performs a permutation test for either the difference in paired means or for the 
correlation.  Before executing, enter the data set into lists L1 and L2.  When prompted, enter 1 or 2 to 
designate the desired test, then enter 1, 2, or 3 to designate the desired alternative.  The resampled 
permuted pair differences in mean (or correlations) are ordered and stored in list L3.  The statistic from 
the original paired sample is displayed along with the P-value. 
 
CAPIND (page 141) computes capability indexes based on given parameters or on data that has been 
entered into lists L1 and L2. 
 
CONTRAST (page 95) computes the P-value for a significance test and a confidence interval for mean 
population contrasts.  Before executing the program, enter the sample sizes into list L1, the sample means 
into list L2, the sample deviations into list L3, and the contrast equation coefficients into list L4.  When 
prompted during the program, enter either 1 or 2 for a one-sided or two-sided alternative. 
 
CONTRL (page 136) computes the upper and lower control limits and graphs the control charts for x  
and s. 
 
CONTRL2 (page 139) computes the upper and lower control limits and graphs the control charts for x  
or s based on past data.  Data sets of equal sizes must be entered into lists L1 and L2 in order to obtain the 
control limits for x .  But only the values of the sample deviations need to be entered into list L2 in order 
to compute the control limits for s. 
 
CONTRLP (page 143) computes the control limits for sample proportions given either summary 
statistics or data entered into lists L1 and L2. 
 
DISTSAMP (page 30) draws a random sample from a discrete distribution that has been entered into lists 
L1 and L2. 
 
FITTEST (page 75) performs a goodness of fit test for a specified discrete distribution. Before executing, 
enter the specified proportions into list L1 and enter the observed cell counts into list L2.  The expected 
cell counts are computed and stored in list L3, and the individual contributions to the chi-square test 
statistic are stored in list L4.  The program displays the test statistic and the P-value. 
 
KRUSKAL (page 127) performs the Kruskal-Wallace test.  Before executing, enter the data into the 
columns of matrix [A] and the sample sizes into a row matrix [B].  The program displays the test statistic 
and P-value.  List L3 will contain the merged, sorted measurements, L4 will contain their (averaged) 
ranks, and L5 will contain the sum of ranks from each population. 
 
LOG1 (page 132) computes and displays the coefficients of the linear regression model for the log of 
odds ratio 0 1log( /(1 )) xp p β β− = + .  Also displays the odds ratio. 
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MULTREG (page 86) computes the regression coefficients and an ANOVA table for the multiple linear 
regression model 0 1 1 ...y x pxpµ β β β= + + + .  The squared correlation coefficient, F-statistic, P-value, 
and the standard deviation are also displayed.  Before executing the program, enter sample data as 
columns into matrix [A] with the last column used for the dependent variable.   
 
ODDS (page 130) computes the appropriate mathematical odds for a given probability p of an event A.  If 

0.50p ≤ , then the odds against A are given as the ratio (1 ) :p p− .  If p > 0.50, then the odds in favor of 
A are given as the ratio : (1 )p p− . 
 
ODDS2 (page 131) computes the odds-in-favor ratio between two proportions. 
 
ODDSINT (page 132) computes a confidence interval for the slope 1β  of the logistic regression model 
and the odds ratio. 
 
ODDSTEST (page 133) computes the test statistic and P-value for the hypothesis test that an odds ratio 
equals 1. 
 
POWER2T (page 61) computes a standard normal approximation of the power of the pooled two sample 
t test upon entering values for the alternative mean difference, the two sample sizes, the level of 
significance, and the common standard deviation. 
 
PSAMPSZE (page 65) computes the required sample size that would give a maximum desired margin of 
error m for a proportion confidence interval. 
 
RANDOM (page 21) randomly chooses a subset of specified size from the set {1, 2, . . ., n} and  stores 
the values in list L1. 
 
RANKSUM (page 121) performs the Wilcoxon rank sum test on data from two populations.  Before 
executing, enter the data into lists L1 and L2.  The program displays the expected sum of ranks from list 
L1, the sums of the ranks from each list, and the smallest tail value created by the test statistic which is 
the sum of the ranks from L1.  List L3 then contains the merged, sorted measurements, and L4 contains 
their (averaged) ranks.   
 
REG1 (page 79) computes confidence intervals for the regression slope and intercept.  Before executing 
the program, data must be entered into lists L1 and L2.  
 
REG2 (page 80) computes a confidence interval for a mean response or a prediction interval for an 
estimated response.  Before executing the program, enter paired data into lists L1 and L2.  
  
REG3 (page 82) computes the ANOVA table for linear regression and displays the associated F-statistic 
and P-value.  Before executing the program, data must be entered into lists L1 and L2.  The ANOVA 
table is stored into lists L4, L5, and L6. 
 
SIGNRANK (page 124) performs the Wilcoxon signed rank test on data sets of size n from two 
populations.  Before executing, enter the data into lists L1 and L2.  The program sorts the absolute value 
of the differences L2 – L1 into list L3, but disregards any zero differences.  The (averaged) rank of each 
non-zero difference is stored in list L4.  The sums of the ranks of the positive differences and of the 
negative differences are displayed.  The program also displays the smallest tail value created by the test 
statistic which is the sum of the ranks of the positive differences. 
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TPOWER (page 54) computes the power against an alternative for hypothesis tests about the mean when 
using a known standard deviation and critical values t*.  
 
TSCORE (page 50) finds the critical value t* of a t distribution upon specifying the degrees of freedom 
and confidence level. 
 
TWOTCI (page 55) computes a confidence interval for the difference of means of normally distributed 
populations when the critical value t* is obtained from the t distribution having degrees of freedom that is 
the smaller of 1n  – 1 and 2n  – 1. 
 
TWOTTEST (page 56) performs hypothesis tests for the difference of means of normally distributed 
populations when the critical value t *  is obtained from the t  distribution having degrees of freedom that 
is the smaller of 1n  – 1 and 2n  – 1. 
 
TWOWAY (page 70) converts a two-way table of raw data into three different proportion tables.  Before 
executing the program, enter the raw data into matrix [A].  The joint distribution is then stored in matrix 
[B], the conditional distribution on the column variable is stored in matrix [C], and the conditional 
distribution on the row variableis stored in matrix [D]. 
 
ZPOWER (page 48) computes the power against an alternative for hypothesis tests about the mean when 
using a known standard deviation and normal distribution z-scores.  
 
ZSAMPSZE (page 43) computes the sample size needed to obtain a desired maximum margin of error 
with a specified level of confidence when finding a confidence interval for the mean using a known 
standard deviation and normal distribution z-scores. 


	Front Matter
	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Index of Programs

