AP Calculus AB

Unit 2 – Limits and Continuity

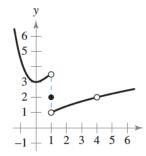
There are no great limits to growth because there are no limits of human intelligence, imagination, and wonder.

Ronald Reagan

Answer the following questions.

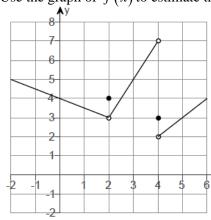
- the following questions.

 For the function $f(x) = 5x^2$, as the x-value gets closer and closer to 3, f(x) gets closer and closer to what P value?
- For the function $f(x) = \frac{x^2 4}{x 2}$, as the x-value gets closer and closer to 2, f(x) gets closer and closer to what value?
- For the function $f(x) = e^x + 1$, as the x-value gets closer and closer to 0, f(x) gets closer and closer to what 3 ₽ value?
- The graph of f(x) is given below, use the graph to answer the following questions. 4



- a) $\lim_{x \to 4^-} f(x)$ b) $\lim_{x \to 4^+} f(x)$ c) $\lim_{x \to 4} f(x)$ d) f(4)

- e) $\lim_{x \to 1^-} f(x)$ f) $\lim_{x \to 1^+} f(x)$ g) $\lim_{x \to 1} f(x)$ h) f(1)
- 5 Use the graph of f(x) to estimate the limits and value of the function, or explain why the limit does not exist.

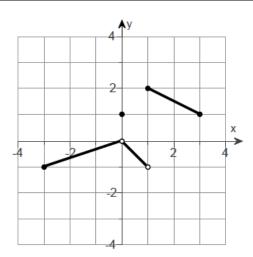


- a) $\lim_{x\to 4^-} f(x)$ b) $\lim_{x\to 4^+} f(x)$ c) $\lim_{x\to 4} f(x)$ d) f(4)

- e) $\lim_{x \to 2^{-}} f(x)$ f) $\lim_{x \to 2^{+}} f(x)$ g) $\lim_{x \to 2} f(x)$ e) f(2)

- 6 Answer each statement as either True or False.
 - a) If f(1) = 5, then $\lim_{x \to 1} f(x)$ exists.
 - b) If f(1) = 5 and $\lim_{x \to 1} f(x)$ exists, then $\lim_{x \to 1} f(x) = 5$.
 - c) If $\lim_{x\to 1} f(x) = 5$, then f(1) = 5.

7



Use the graph of f(x) above to answer each statement as either True or False.

a)	$\lim_{x \to 0} f(x) $ exists	
u)	$\underset{x\to 0}{\text{min } f}(x)$ exists	

$$b) \quad \lim_{x \to 0} f(x) = 1$$

c)
$$\lim_{x\to 0} f(x) = 0$$

$$d) \quad \lim_{x \to 1} f(x) = 2$$

e)
$$\lim_{x \to 1} f(x) = -1$$

f)
$$\lim_{x \to c} f(x)$$
 exists for every point c in $(-3,1)$.

g)
$$\lim_{x \to 1} f(x)$$
 does not exist

$$h) \quad f(0) = 0$$

i)
$$f(0)=1$$

$$j) \quad f(1) = -1$$

$$k) \quad f(1) = 2$$

1)
$$\lim_{x\to 2} f(x)$$
 exists

8 Simplify $\frac{x^2 + 7x + 12}{x^2 - 16}$

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits:

$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$.

$$- \lim_{x \to c} k = k$$

$$-\lim_{x\to c} x = c$$

$$\lim_{x \to c} k = k \qquad - \lim_{x \to c} x = c \qquad - \lim_{x \to c} \left[f(x) \pm g(x) \right] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x) = L \pm M$$

$$-\lim_{x\to c} \left[f(x) \cdot g(x) \right] = \lim_{x\to c} f(x) \cdot \lim_{x\to c} g(x) = L \cdot M \qquad -\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)} = \frac{L}{M}; \quad M \neq 0$$

$$-\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}; \quad M \neq 0$$

-
$$\lim_{x \to a} [bf(x)] = bL$$

$$-\lim_{x\to 0} \sqrt[n]{f(x)} = \sqrt[n]{L}$$

$$-\lim_{x\to 0} \left[f(x) \right]^n = L^n$$

1) Suppose $\lim_{x \to c} f(x) = 5$, $\lim_{x \to c} g(x) = -2$, and $\lim_{x \to c} h(x) = 9$, find a) $\lim_{x \to c} \left[f(x)g(x) \right]$ b) $\lim_{x \to c} \left[f(x)g(x) \right]$

a)
$$\lim_{x\to c} [f(x)g(x)]$$

b)
$$\lim_{x \to c} [f(x) - g(x)]$$

c)
$$\lim_{x \to c} \sqrt{h(x)}$$

d)
$$\lim_{x \to c} \left[\frac{g(x) + 1}{x} \right]$$

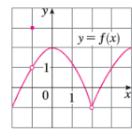
e)
$$\lim_{x \to c} \left[2h(x) - 3g(x) \right]$$

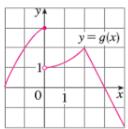
f)
$$\lim_{x \to c} \left[\frac{f(x)}{h(x)} \right]$$

g)
$$\lim_{x \to c} \left[\frac{g(x)}{f(x)} \right]$$

h)
$$\lim_{x\to c} \left[g(x)\right]^2$$

2) The graphs of f and g are given below. Use the graphs to evaluate each limit.





a)
$$\lim_{x \to -1} \left[f(x) + g(x) \right]$$

b)
$$\lim_{x \to 3} f(g(x))$$

c)
$$\lim_{x \to 3} [f(x)g(x)]$$

d)
$$\lim_{x \to 2} [2f(x) + 5g(x)]$$

e)
$$\lim_{x \to -1} \left[\frac{f(x)}{g(x)} \right]$$

f)
$$\lim_{x\to 2} \left[xf(x) \right]$$

- 3) Suppose that $\lim_{x \to 7} f(x) = 0$ and $\lim_{x \to 7} g(x) = 5$. Determine the following limits.
 - a) $\lim_{x\to 7} \left(g(x) + 5\right)$

b) $\lim_{x\to 7} xf(x)$

c) $\lim_{x \to 7} g^2(x)$

d) $\lim_{x \to 7} \left[\frac{g(x)}{f(x) - 1} \right]$

Once we accept our limits, we go beyond them. - Albert Einstein

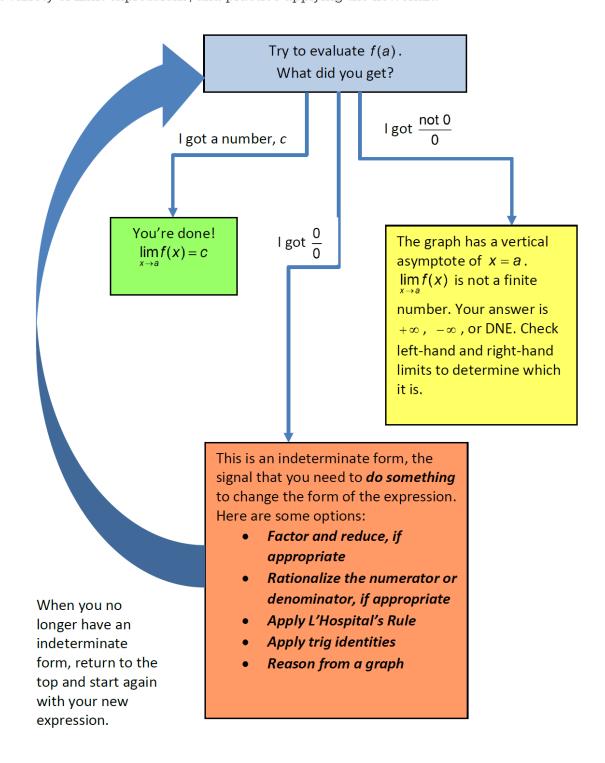
Evaluate the limit.

1	$\lim_{x\to -3} (3x+2)$
2	$\lim_{x \to 1} \left(3x^3 - 2x^2 + 4 \right)$
3	$\lim_{x \to 3} \frac{\sqrt{x-1}}{x-4}$
4	$\lim_{x\to 2} \cos\frac{\pi x}{3}$
5	$\lim_{x\to 1} \sin \frac{\pi x}{2}$
6	$\lim_{x\to 0} \sec 2x$
7	$\lim_{x \to 3} \frac{x^2 - 9}{x + 3}$
8	$\lim_{x \to 0} \frac{3x^2 - 2x + 1}{x}$
9	$\lim_{x \to 0} \frac{3x^2 - 2x + 1}{x}$ $\lim_{x \to 1} \frac{5x^2 + 6x + 10}{8x - 1}$
10	$\lim_{x \to 0} \frac{2 + 5x + \sin x}{5\cos x}$
11	For the following piecewise function $f(x) = \begin{cases} 5 - x, & x < 3 \\ \frac{3x}{4} + 1, & x > 3 \end{cases}$, evaluate $\lim_{x \to 3} f(x)$.
	For the following piecewise function: $f(x) = \begin{cases} x+1, & x < 2 \\ x^2 - 1, & 2 < x < 4 \end{cases}$, evaluate: $\sqrt{x+5}$, $x \ge 4$
	12) a) $\lim_{x \to 2^{-}} f(x)$ b) $\lim_{x \to 2^{+}} f(x)$ c) $\lim_{x \to 2} f(x)$ d) $f(2)$
	13) a) $\lim_{x \to 4^{-}} f(x)$ b) $\lim_{x \to 4^{+}} f(x)$ c) $\lim_{x \to 4} f(x)$ d) $f(4)$

Limit Strategy Flowchart

The following flowchart can help you pick a strategy for evaluating limits of the form $\lim_{x\to a} f(x)$, where f(x) is a rational expression.

Study the flowchart, making sure you understand it. In your textbook, turn to exercises asking you to evaluate a variety of limit expressions, and practice applying the flowchart.



Evaluate each limit

1)
$$\lim_{x \to 1} (12x^3 + x^2 - 1)$$

2)
$$\lim_{x \to 5} \frac{x+1}{x+2}$$

3)
$$\lim_{x \to 4} \frac{x^2 + 5x + 4}{x + 2}$$

$$4) \quad \lim_{x \to 0} \frac{x^2 - 2x}{x}$$

$$5) \quad \lim_{x \to 4} \frac{4 - x}{2 - \sqrt{x}}$$

6)
$$\lim_{x \to \frac{\pi}{4}} \left(\sin^2 x + \cos^2 x \right)$$

7)
$$\lim_{x \to -1} \frac{2x^2 - x - 3}{x + 1}$$

8)
$$\lim_{x \to 3} \frac{\sqrt{x+13} - 4}{x-3}$$

9)
$$\lim_{x \to -3} \frac{2x+1}{x+3}$$

10)
$$\lim_{x \to -8} \frac{y^2 + 9y + 8}{y^2 - 64}$$

11)
$$\lim_{x\to 10} \frac{x^2-100}{x-10}$$

12)
$$\lim_{h\to 0} \frac{(9+h)^2-81}{h}$$

13)
$$\lim_{x \to 1} f(x) \text{ for } f(x) = \begin{cases} 2x+1, & x < 1 \\ x-3, & x \ge 1 \end{cases}$$

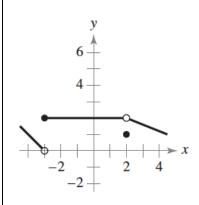
- 14) Suppose $\lim_{x\to 3} f(x) = -5$ and $\lim_{x\to 3} g(x) = 2$, evaluate $\lim_{x\to 3} 4[f(x)-2g(x)]$
- 15) Suppose $f(x) = \begin{cases} x^2 ax, & x \le 2 \\ 3x + 6, & x > 2 \end{cases}$, find the value a that guarantees that $\lim_{x \to 2} f(x)$ exists.

 16) Suppose $f(x) = \begin{cases} x^2 4x, & x < -1 \\ ax^3 2, & x > -1 \end{cases}$, find the value a that guarantees that $\lim_{x \to 1} f(x)$ exists.
- 17) If $\lim_{x \to 7} \frac{f(x) + 9}{x 7} = 5$, find $\lim_{x \to 7} f(x)$.
- 18) If $\lim_{x\to 4} \frac{f(x)-7}{x-4} = 6$, find $\lim_{x\to 7} f(x)$.

The only limits to the possibilities in your life tomorrow are the "buts" you use today. – Les Brown

For #1-4, find $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.	
1. $f(x) = 2x + 3$	2. $f(x) = x^2 - 4x$
$3. f(x) = \frac{4}{x}$	$4. \ f(x) = \sqrt{x}$

Use the graph of f(x) shown below to answer 5-7. The domain of f(x) is $(-\infty,\infty)$.



- $5. \lim_{x \to 2} f(x)$
- $6. \lim_{x \to -3} f(x)$
- 7. Identify the values of c for which $\lim_{x\to c} f(x)$ exists. (Hint: think interval)

Find the limit, if it exists.

8. $\lim_{x \to 1} \frac{x^2 + 3x + 2}{x - 1}$ 9. $\lim_{x \to 5} \frac{x - 5}{x + 1}$ 10. $\lim_{x \to 2} \frac{x - 3}{x^2 - 25}$ 11. $\lim_{x \to \frac{\pi}{6}} (\sin^2 x)$

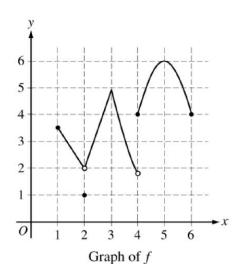
12 If
$$1 \le f(x) \le x^2 + 2x + 2$$
 for all x , find $\lim_{x \to -1} f(x)$. Justify.

13 If $-3\cos(\pi x) \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$. Justify

14 If $2 - x^2 \le g(x) \le 2\cos x$ for all x , find $\lim_{x \to 0} g(x)$.

15 If $\lim_{x \to 4} \frac{f(x) - 5}{x - 2} = 1$, find $\lim_{x \to 4} f(x)$.

Quiz Review



For questions 1-2, use the graph of the function f shown above.

- 1 a) $\lim_{x\to 2^-} f(x)$
- b) $\lim_{x \to 2^+} f(x)$
- c) $\lim_{x\to 2} f(x)$
- d) f(2)

- b) $\lim_{x \to 4^+} f(x)$
- c) $\lim_{x\to 4} f(x)$
- d) f(4)

- $\lim_{x \to 4} \left(x^2 3x + 7 \right) =$
- $\lim_{x \to 1} \sqrt{x^3 + 7x + 1} =$
- $\lim_{x \to -3} \frac{x^2 9}{x^2 2x 15} =$
- $\lim_{x \to 0} \frac{2x^6 + 6x^3}{4x^5 + 3x^3} =$
- $\lim_{x \to 3} \frac{|x-3|}{x-3} =$
- Given $f(x) = \begin{cases} x^2 \sin(\pi x), & x < 2 \\ x^2 + cx 18, & x \ge 2 \end{cases}$, find the value of c that $\lim_{x \to 2} f(x)$ exists

Limits at Infinity

Evaluate each limit

1) $\lim_{x \to \infty} \left(-5x^3 - 7x^2 + 1 \right)$	2) $\lim_{x \to -\infty} (5x^3 - 7x^2 + 1)$	$3) \lim_{x \to \infty} \left(8 + \frac{9}{x^2} \right)$	4) $\lim_{x \to \infty} \frac{2 + 6x + 9x^2}{x^2}$
$5) \lim_{x \to \infty} \frac{9x + 8}{9x + 7}$	$6) \lim_{x \to -\infty} \frac{9x + 8}{9x + 7}$	$7) \lim_{x \to \infty} \frac{\sqrt{2x^2 - 4}}{x + 3}$	$8) \lim_{x \to -\infty} \frac{\sqrt{x^2 - 4}}{x + 3}$
$9) \lim_{x\to\infty}\frac{x^3}{e^{3x}}$	$10) \lim_{x \to -\infty} \frac{x^3}{e^{3x}}$	$11) \lim_{x \to \infty} \frac{\sin 3x}{15x}$	12) $\lim_{x \to -\infty} \frac{7 - 6x + \sin 2x}{6x + \cos 2x}$

13)

For which of the following does $\lim_{x\to\infty} f(x) = 0$?

$$I. \ f(x) = \frac{\ln x}{x^{99}}$$

II.
$$f(x) = \frac{e^x}{\ln x}$$

III.
$$f(x) = \frac{x^{99}}{e^x}$$

14) Determine the horizontal asymptote(s) of each of the following.

a)
$$y = \frac{20x^2 - x}{1 + 4x^2}$$

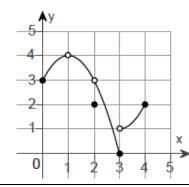
b)
$$f(x) = \frac{(3x+8)(5-4x)}{(2x+1)^2}$$

c)
$$g(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Strive for continuous improvement, instead of perfection. - Kim Collins

3-Part Definition of Continuity

1. Determine the *x*-values at which the function *f* below has discontinuities. For each value state which condition is violated from the 3-part definition of continuity.



- I. f(c) is defined
- II. $\lim_{x\to c} f(x)$ exists.
- III. $f(c) = \lim_{x \to c} f(x)$

Show (THREE STEPS) that each of the following functions is either continuous or discontinuous at the given value of x.

2. f(x) = x + 5 at x = 1

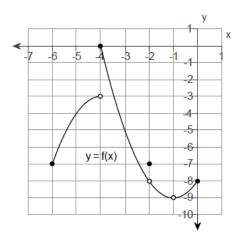
3. $f(x) = x^2 + 2x - 1$ at x = 0

4. $f(x) = \frac{x^2 - 16}{x - 4}$ at x = 4

5. $f(x) = \frac{x^2 - 25}{x + 5}$ at x = 5

6. $f(x) = \frac{1}{x}$ at x = 3

7. $f(x) = \frac{3x-1}{2x+6}$ at x = -3

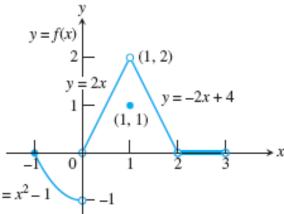


8. Determine the intervals on which the graph of f(x), shown above, is continuous

State the open interval(s) on which each function is continuous.

9. $f(x) = x^2 + 2$	$10. f(x) = \frac{1}{x}$
11. $f(x) = \frac{x^2 + 1}{x - 1}$	12. $f(x) = \frac{x^2 - 3x + 2}{x^2 + 4x - 5}$

$$f(x) = \begin{cases} x^2 - 1, & -1 \le x < 0 \\ 2x, & 0 < x < 1 \\ 1, & x = 1 \\ -2x + 4, & 1 < x < 2 \\ 0, & 2 < x < 3 \end{cases}$$

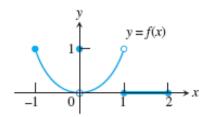


- 13. Given f(x) and the graph of f(x), state why continuity fails at each value of x.
- 14. State the interval(s) on which f(x) is continuous.

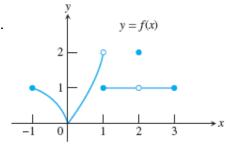
For questions 1 & 2,

- a) Determine the x-coordinate of each discontinuity on the graph of f(x).
- b) Identify each discontinuity as either **removable** or **jump**.
- c) Evaluate the limit at each discontinuity.
- d) State the interval(s) on which f(x) is continuous.

1.



2



For questions 3-5, answer the following:

- a) Determine the x-coordinates of any discontinuities on the graph of f(x).
- b) Identify the discontinuities as either **infinite** or **removable**.
- c) Evaluate the limit at each **removable** discontinuity.
- d) State the interval(s) on which f(x) is continuous.
- e) Write an extended function of g(x) that is continuous.

3.
$$f(x) = \frac{x-2}{x^2-5x+6}$$

4.
$$f(x) = \frac{x^2 - 4}{x + 2}$$

5.
$$f(x) = \frac{x^2 + x - 12}{x^2 + 6x + 8}$$

- 6. Find the value of *a* that makes $f(x) = \begin{cases} 2x^2 4, & x < 2 \\ ax + 3, & x \ge 2 \end{cases}$ continuous on the entire interval.
- 7. Find the value of *a* that makes $f(x) = \begin{cases} ax^2 + 2, & x < 3 \\ 4x 1, & x \ge 3 \end{cases}$ continuous on the entire interval.
- 8. Find the value of k that makes $f(x) = \begin{cases} \frac{(2x+1)(x-2)}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$ continuous on the entire interval.

Evaluate each limit

9. $\lim_{x \to \infty} \frac{x^{99}}{e^x}$	$10. \lim_{x \to \infty} \frac{e^x}{\ln x}$	11. $\lim_{x \to \infty} \frac{\ln x}{r^{99}}$	12. $\lim_{x \to -\infty} \frac{x^{99}}{e^x}$
, e	" , III A	A	, E

Each of the following has a removable discontinuity. Find an extended function, g(x), that removes the discontinuity.

1)
$$f(x) = \frac{x^2 - 5x + 6}{x - 3}$$

$$2) \quad f\left(x\right) = \frac{x^2 - 5}{x - \sqrt{5}}$$

$$3) \quad f(x) = \frac{x^3 + 8}{x + 2}$$

4) Find each limit

a)
$$\lim_{x \to -3^{-}} \frac{-3x}{x+3}$$

b)
$$\lim_{x \to -3^+} \frac{-3x}{x+3}$$

5) Find the vertical asymptote on the graph of $f(x) = \frac{x^2 - 10x}{x + 9}$. Describe the behavior of f(x) to the left and right of the vertical asymptote.

For problems 6-7,

- a) Determine the x-coordinate of the discontinuities on the graph of f(x). Identify the discontinuities as either infinite or removable.
- b) Use limits to describe the behavior of f(x) near any removable discontinuities.
- c) State the interval(s) on which f(x) is continuous.
- d) Identify any vertical asymptotes on the graph of f(x). Use limits to describe the behavior of f(x) near the vertical asymptote.
- e) Use limits to identify any horizontal asymptotes on the graph of f(x).
- f) Draw an accurate graph of f(x).

6)
$$f(x) = \frac{x^2 - 4}{x^2 + 3x + 2}$$

7)
$$f(x) = \frac{2x^2 - 5x + 3}{x^2 + 6x - 7}$$

8) Sketch the graph of any function such that:

$$\lim_{x \to -\infty} f(x) = -\infty$$

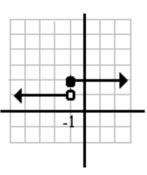
$$f(1)=3$$

$$\lim_{x \to 1} f(x) = -2$$

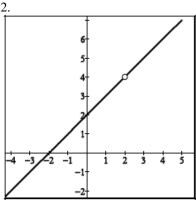
$$\lim_{x\to\infty}f(x)=5$$

To live for results would be to sentence myself to continuous frustration. My only sure reward is in my actions and not from them. – Hugh Prather

For problems 1-4, use the graph to test the function for continuity at the indicated value of x.

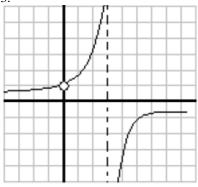


- 1a) Explain why continuity fails at x = -1.
- **1b)** What kind of discontinuity does f(x) have?
- 1c) On what open interval(s) is f(x) continuous?

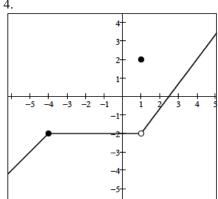


- 2a) Explain why continuity fails at x=2.
- **2b)** What kind of discontinuity does f(x) have?
- **2c)** On what open interval(s) is f(x) continuous?

3.



- **3a**) Explain why continuity fails at x = 3.
- **3b)** What kind of discontinuity does f(x) have at x=3?
- **3c**) On what open interval(s) is f(x) continuous?



- **4a**) Explain why continuity fails at x = 1.
- **4b)** What kind of discontinuity does f(x) have?
- **4c**) On what open interval(s) is f(x) continuous?

Determine whether f(x) is continuous at the given value of x.

5)
$$f(x) = \begin{cases} \sin \pi x, & x \le 2 \\ x^2 + 3x - 9, & x > 2 \end{cases}$$
, $x = 2$ 6) $f(x) = \begin{cases} -2x + 3, & x < 1 \\ x^2, & x \ge 1 \end{cases}$, $x = 1$

Find the constant a, or the constants a and b, such that the function is continuous on the entire number line.

7)
$$f(x) =\begin{cases} x^3, & x \le 2 \\ ax^2, & x > 2 \end{cases}$$
8) $f(x) =\begin{cases} 4 - x^2, & x < -1 \\ ax^2 - 1, & x \ge -1 \end{cases}$
9) $f(x) =\begin{cases} 2, & x \le -1 \\ ax + b, & -1 < x < 3 \\ -2, & x \ge 3 \end{cases}$
10) $f(x) =\begin{cases} -x^2 + 3x, & x < 2 \\ a, & x = 2 \\ 7x + 9, & x > 2 \end{cases}$

In 1-3, verify that the Intermediate Value Theorem guarantees that there is a zero in the interval for the given function.

Use a graphing calculator to find the zero.

- 1) $f(x) = \frac{1}{16}x^4 x^3 + 3$; [1,2]
- 2) $f(x) = x^3 + 3x 2$; [-2,1]
- 3) $f(x) = x^2 x \cos x$; $[0, \pi]$

In 4-6, verify that the Intermediate Value Theorem applies to the indicated interval and find the value of c guaranteed by the theorem. No calculator is permitted on these problems.

- 4) $f(x) = x^2 + x 1$ f(c) = 11 in [0,5]
- 5) $f(x) = x^2 6x + 8$ f(c) = 5 in [0,3]
- 6) $f(x) = x^3 x^2 + x 2$ f(c) = 4 in [0,3]

Given selected values of the continuous function h(x), what is the fewest number of times h(x) = 43 in the interval [0,30]? Explain your reasoning.

χ	0	5	10	15	20	25	30
h(x)	100	40	40	110	30	10	50

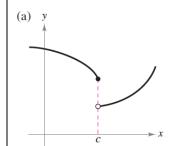
8

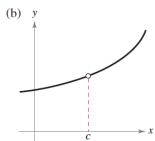
Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{\frac{1}{20}}$ liters per hour for $0 \le t \le 8$, where t is measured in hours. Water is removed from the same tank at a rate modeled by R(t) liters per hour, where R is continuous and decreasing on $0 \le t \le 8$. Selected values of R(t) are shown in the table below.

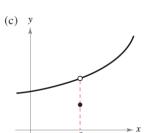
t (hours)	0	1	3	6	8
R(t) (liters/hour)	1340	1190	950	740	700

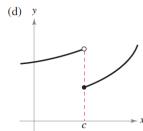
For $0 \le t \le 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain your reasoning.

9 For each of the graphs below state how continuity is destroyed at x = c.







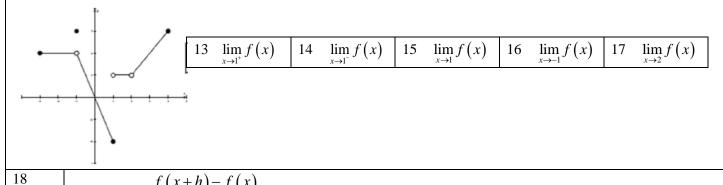


10

Determine whether f(x) is continuous at x = -1 for $f(x) = \begin{cases} \frac{1}{x}, & x \le -1 \\ \frac{x-1}{2}, & -1 < x < 1 \\ \sqrt{x}, & x \ge 1 \end{cases}$

1	$\lim_{x \to \frac{\pi}{2}} \frac{1 + \sin x}{1 - \cos x}$	2	$\lim_{x \to \infty} \frac{\cos 2x}{x^2}$
3	$\lim_{x \to \infty} \left(\frac{6x^3 - 5x}{x^2 + 4x^3} \right)$	4	$\lim_{x \to \infty} \frac{x^2 + x^4}{x^2 + x^6}$
5	$\lim_{x \to -\infty} \frac{8x^3 - 5x}{x^2 - 3x}$	6	$\lim_{x\to 4^-} \frac{5}{x-4}$
7	$\lim_{x \to 2} \frac{4x^3 - 32}{5x^2 - 20}$	8	$\lim_{x \to \infty} \frac{1}{1 + e^x}$
9	$\lim_{x \to -\infty} \frac{e^x}{4x^3 - 3}$	10	$\lim_{x \to 0} \frac{\sin 3x}{7x}$
11	Sketch a graph of a function such that: $f(3) = 2 \qquad \lim_{x \to 3} f(x) = -1$ $\lim_{x \to -2^+} f(x) = -\infty \qquad \lim_{x \to -2^+} f(x) = \infty$ $\lim_{x \to \infty} f(x) = 5 \qquad \lim_{x \to \infty} f(x) = -\infty$	12	Find the value of a that will make $g(x)$ continuous. $g(x) = \begin{cases} ax + 3, & x \le 1 \\ (x+a)^2 - 10, & x > 1 \end{cases}$

Use the following graph of f(x) to answer the next five questions. If the limit does not exist, state why.



- Evaluate $\lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ for $f(x) = 2x^2 7x$ 19
 If $f(x) = \begin{cases} 2x 1, & x \le 1 \\ -3x + 1, & x > 1 \end{cases}$, determine if f(x) continuous at x = 1.
- If $f(x) = \begin{cases} \frac{x^2 + 6x + 8}{x + 2}, & x \neq -2 \\ 2, & x = -2 \end{cases}$, determine if f(x) is continuous at x = -2.
- Find an extended function of $f(x) = \frac{x^2 16}{x 4}$ that is continuous.

Answers

Worksheet 8

1)

a) -10	b) 7	c) 3	d) $-\frac{1}{c}$
e) 24	f) $\frac{5}{0}$	$g) -\frac{2}{5}$	h) 4

2)

a) 3	b) 2	c) 0
d) 8	e) $\frac{1}{2}$	f) -2

a) 10

b) 0	c) 25	d) -5

4) -9

5) 7

Worksheet 9						
1) -7	2) 5	3) $-\sqrt{2}$	4) $-\frac{1}{2}$	5) 1	6) 1	7) 0
8) DNE	9) 3	10) $\frac{2}{5}$	11) DNE	12) a) 3 b) 3 c) 3 d) undefined	13) a) 15 b) 3 c) DNE d) 3	

Worksheet 10		
1) 12	2) $\frac{6}{7}$	3) $\frac{20}{3}$
4) –2	5) 4	6) 1
7) -5	8) $\frac{1}{8}$	9) DNE
10) $\frac{7}{16}$	11) 20	12) 18
13) DNE	14) -36	15) <i>a</i> = -4

Worksheet 12

Quiz Review

1	2; 2; 2; 1	2) 2; 4; DNE; 4	3) 11	4) 3
_	3	6) 2	7) -1	8) 7
)	$\frac{-}{4}$			$\begin{vmatrix} 8 \end{pmatrix} \frac{1}{2}$

Limits at Infinity

Diffics at Illimity			
1) −∞	2) ∞	3) 8	4) 9
5) 1	6) 1	7) √2	8) $-\sqrt{2}$
9) 0	10) −∞	11) 0	12) -1
13) I and III	14) a) $y = 5$ b) $y = -3$ c) $y = 1; y = -1$		

Worksheet	1	8

1. 2	2. 0	3. $\frac{3}{2}$	4. 0	5. DNE	6. −∞	7. $\frac{12}{5}$
3. ∞	9. 0	10. $\frac{3}{7}$	11. Answers will vary	124, 3	13. 1	142
5. DNE	16. 2	17. 1	18. $4x-7$			I
19. I. $f(1) = 1$ II. $\lim_{x \to 1^{+}} f(x) = 1 \neq \lim_{x \to 1^{-}} f(x) = -2$ $\lim_{x \to 1} DNE$ $\therefore f(x) \text{ is not continuous at } x = 1$			20. I. $f(-2) = 2$ II. $\lim_{x \to -2} \frac{x^2 + 6x}{x + 2}$ III. $f(-2) = \lim_{x \to -2} \frac{1}{x}$ $\therefore f(x)$ is continuous	2	= 2	
, ,	($x = 4$ $\frac{x+4}{4} = \lim_{x \to 4} (x+4)$)			