For 1-5, solve each equation.

1	$e^{1-x} = 5$
2	$8^{6x+3} = 4$
3	$2\log_3 x - 3 = 4$
4	$\ln(3x+4) - \ln(2x) = 5$
5	$\log_6(x+3) + \log_6(x+4) = 1$

Write each expression as a single logarithm.

6	$-2\log_3\left(\frac{1}{x}\right) + 3\log_3\sqrt{x}$
7	$\log(x^2 - 9) - \log(x^2 + 7x + 12)$
8	$2\log 2 + 3\log x - \frac{1}{2} \left[\log(x+3) + \log(x-2) \right]$

9	The half-life of radioactive cobalt is 5.27 years. There are initially 100 grams of radioactive cobalt present.						
	a) Express the amount of cobalt <i>P</i> remaining as a function of time <i>t</i> .						
	b) How much will be present in 20 years?						
	c) When will there be 15 grams remaining?						
10	Susan invests \$4800 into an account that pays 6.2% interest compounded quarterly.						
	a) Express the amount of money A in the account as a function of time t.						
	b) How much will be in the account in 10 years?						
	c) When will there be \$13,000 in the account?						
11	The population of Metrocity is 123,000 and is decreasing by 2.4% each year.						
	a) Express the population P of Metrocity as a function of time t.						
	b) How many people will be in Metrocity in 15 years?						
	c) When will there be 50,000 people in Metrocity?						
12	The number P of students infected with flu at Northridge High School t days after exposure is modeled by						
	$\mathbf{P}(\cdot) = 300$						
	$P(t) = \frac{1}{1 + e^{4-t}}$, where t is measured in days.						
	a) What was the initial ($t = 0$) number of students infected with the flue?						
	b) How many students were infected after 3 days?						
	c) When will 100 students be infected?						
13	What interest rate compounded continuously is required for a \$22,000 investment to grow to \$36,500 in 5 years?						
14	How long would it take for an initial investment of \$1250 to grow to \$1800 if it is placed into an account that pays						
	5.4% interest compounded continuously?						
15	For $f(x) = 4x^3 + 9x^2 - 30x - 8$, use a graphing calculator to find:						
	a) the real zeros of f .						
	b) The local maxima and local minima						

Answers								
1) -0.609	2) -0.389	3) 1.140	4) 0.014	5) -1				
6) $\log_3 x^{\frac{7}{2}}$	7) $\log \frac{x-3}{x+4}$	$8) \log \frac{4x^3}{\sqrt{x^2 + x - 6}}$	9) a) $P = 100 \left(\frac{1}{2}\right)^{\frac{t}{5.27}}$	10) $A = 4800(1.0155)^{4t}$				
			b) 7.204 g c) 14.424 years	\$8880.52 16.194 years				
11)	12) 5, 80, 3.307	13) 10.1%	14) 6.753 years	15) $r = -4.2 - \frac{1}{-1}$				
$P = 123000(0.976)^t$				10) x = 4, 2, 4				
85,438				Max (-2.5, 60.75)				
37.055 years				101111(1, -23)				