Book of Quadratic Equations

**when asked to FACTOR the answer will be =(expression)(expression)

**when asked to SOLVE the answer will be

x = number & x = number

Words with similar meaning:

function = equation; difference = -

product = multiply;

factor = divide

roots = x-intercept = solution; sum = add

			Page 2 of 14
NAME	Period	Date	Ms. Nong

Quadratic equation always represent parabola. Parabola is open up when the coefficient of x square is positive and open down when it is negative.

The parabola can lie entirely above or below the x-axis without any intersection. Such parabolas do have imaginary roots. If the parabola touches the x axis, then it has solutions, these are called real roots.

2 methods to graph a PARBOLA: Using a xy-chart or Vertex Form

Here are the steps required for Graphing Parabolas in the Vertex Form $y = a(x - h)^2 + k$:

- **Step 1**: Find the vertex. Since the equation is in vertex form, the vertex will be at the point (h, k).
- **Step 2**: Find the y-intercept. To find the y-intercept let x = 0 and solve for y.
- **Step 3**: Find the x-intercept(s). To find the x-intercept let y = 0 and solve for x. You can solve for x by using the square root principle or the quadratic formula (if you simplify the problem into the correct form).
- **Step 4**: Graph the parabola using the points found in steps 1 3.

Solve by Graphing

Sketch the graph and find the solution of the quadratic equations:

1) $y = x^2 - x - 6$	2) $y = x^2 + 6x + 8$
3) $y = x^2 + 3x - 10$	4) $y = x^2 + 8x + 12$

Sketching parabola and finding the roots is not easy all time.

Other techniques are available to find Roots of a quadratic equation without graphing the quadratic equations. See how many techniques we have below:

Remember :
 If
$$x^2 = m$$
 then $x = \pm \sqrt{m}$

 Solve by Taking Square Roots

 Example $(x-2)^2 - 25 = 0$
 $(x-2)^2 = 25$
 $\sqrt{(x-2)^2} = \pm \sqrt{25}$
 $x-2 = \pm 5$ so $\boxed{x=-3,7}$
 Example $(x-2)^2 = 12$
 $\sqrt{(x-2)^2} = \pm \sqrt{12}$
 $x-2 = \pm \sqrt{4 \cdot 3}$
 $= \pm 2\sqrt{3}$
 $x = 2 \pm 2\sqrt{3}$
 $x = 2 \pm 2\sqrt{3}$
 $x = 2 \pm 2\sqrt{3}$
 $(x+1)^2 - \frac{9}{4} = 0$

 A) $(x-3)^2 - 18 = 0$

Solve by Squaring Both Sides

$1)\sqrt{10x-9} = x$	$2)\sqrt{x(10x+1)} = \sqrt{2}$
$3)\sqrt{1-8x} = 3x$	4) $\sqrt{x(x-7)} = 2\sqrt{2}$
$5)\sqrt{4x+5} = x$	$6)\sqrt{(x-2)x} = \sqrt{3}$

SOLVING: by using the Quadratic Formula

Quadratic Formula:	Use whenever Steps:
For $ax^2 + bx + c = 0$, $-b \pm \sqrt{b^2 - 4ac}$	 Start with the equation in the form ax² + bx + c = 0 ◆Be sure it is set equal to zero! Factor the left hand side (assuming zero is on the right)
x =	 3. Set each factor equal to zero 4. Solve to determine the roots (the values of <i>x</i>)
Example 1. $3x^2 - 5x - 2 = 0$	Example 2. $x^2 - 2x + 1 = 4$
1) $9x^2 - 8x - 1 = 0$	2) $2x^2 + 6 = 7x$
3) $3x^2 + 2x = 8$	4) $8x^2 + 10x = 7$
5) $4x^2 + 5 = -12x$	6) $5x^2 - 17x + 6 = 0$

SOLVING: by Completing the Square

Steps for Completing the Square:	
1. Be sure that the coefficient of the highest power is one. If it is not, divide each term by that value to create a leading coefficient of one.	$x^2 + 8x - 4 = 0$
2. Move the constant term to the right hand side.	$x^2 + 8x = 4$
3. Prepare to add the needed value to create the perfect square trinomial. Be sure to balance the equation. The boxes may help you remember to balance.	$x^2 + 8x + \square = 4 + \square$
4. To find the needed value for the perfect square trinomial, take half of the coefficient of the <i>middle term</i> (x-term), square it, and add that value to both sides of the equation. Take half and square $x^2 + 8x + \Box = 4 + \Box$	$x^2 + 8x + 16 = 4 + 16$
5. Factor the perfect square trinomial.	$(x+4)^2 = 20$
6. Take the square root of each side and solve. Remember to consider both plus and minus results.	$x+4 = \pm \sqrt{20}$ $x = -4 \pm \sqrt{20} = -4 \pm 2\sqrt{5}$ $x = -4 + 2\sqrt{5}$ $x = -4 - 2\sqrt{5}$

Page **6** of **14**

Example:

Kample:

$$\begin{array}{l}
x^{2} - 2x - 1 = 0 \\
x^{2} - 2x = 1 \\
x^{2} - 2x + \boxed{1} = 1 + \boxed{1} \\
x^{2} - 2x + \boxed{1} = 1 + \boxed{1} \\
x^{2} - 2x + 1 = 2 \\
(x - 1)^{2} = 2 \\
x - 1 = \pm \sqrt{2} \\
x = 1 \pm \sqrt{2} \\
x = 1 \pm \sqrt{2} \\
x = 1 \pm \sqrt{2}; \quad x = 1 - \sqrt{2}
\end{array}$$
Example:

$$\begin{array}{l}
5x^{2} - 6x = 8 \\
x^{2} - \frac{6}{5}x = \frac{8}{5} \\
x^{2} - \frac{6}{5}x + \boxed{9} = \frac{8}{5} + \boxed{1} \\
x^{2} - \frac{6}{5}x + \frac{9}{25} = \frac{8}{5} + \frac{9}{25} \\
x^{2} - \frac{6}{5}x + \frac{9}{25} = \frac{40}{25} + \frac{9}{25} \\
x^{2} - \frac{6}{5}x + \frac{9}{25} = \frac{40}{25} + \frac{9}{25} \\
x^{2} - \frac{6}{5}x + \frac{9}{25} = \frac{40}{25} + \frac{9}{25} \\
x^{2} - \frac{6}{5}x + \frac{9}{25} = \frac{40}{25} \\
x^{2} - \frac{6}{5}x + \frac{9}{25} = \frac{49}{25} \\
\left(x - \frac{3}{5}\right)^{2} = \frac{49}{25} \\
x - \frac{3}{5} \pm \frac{7}{5} = \frac{3}{5} \\
x = \frac{3}{5} \pm \frac{7}{5} = \frac{3}{5} \\
x = \frac{10}{5} = 2; \quad x = \frac{-4}{5}
\end{array}$$

Solve by Completing the Square Method

Solve the quadratic equations using completing the square method:

1) $x^2 - 7x + 10 = 0$	2) $x^2 + x - 2 = 0$
3) $x^2 + 5x + 6 = 0$	4) $x^2 - 5x + 4 = 0$
5) $x^2 + 7x + 12 = 0$	$6)x^2 + 9x + 8 = 0$
$7)^{8x^2 - 30x + 7} = 0$	8) $6x^2 + 17x + 5 = 0$
9) $9x^2 - 18x + 8 = 0$	10) $4x^2 + 5x - 6 = 0$

FACTORING: Trinomials (split the middle)

Example: $3x^2 - 14x + 11 =$	Check for GCF first
More ex See wkst MF4	
1) $3x^2 - 4x - 7 =$	2) $x^2 + 5x + 6 =$
3) $2m^2 + 7m - 4 =$	4) $a^2 - 10a + 9 =$
5) $2x^2 - 3x - 5 =$	6) $y^2 - 10y + 24 =$
7) $3x^2 - 7x + 2 =$	8) $a^2 - a - 72 =$
9) $5x^2 - 14x - 3 =$	10) $m^2 + m - 30 =$
11) $4x^2 + 4x - 3 =$	12) $15x^2 - 14x - 8 =$

SOLVING: Quadratic Expression

Example:	Steps:
$2x^2 - x - 6 = 0$	1. Start with the equation in the form
(2x+3)(x-2)=0	$ax^2 + bx + c = 0$ Be sure it is set equal to zero!
2x + 3 = 0 $x - 2 = 0$	2. Factor the left hand side (assuming
3	zero is on the right)
$x = -\frac{1}{2}$ $x = 2$	3. Set each factor equal to zero
2	values of <i>x</i>)
1) $3x^2 + 10x + 7 = 0$	2) $2x^2 - 9x + 9 = 0$
3) $5x^2 + 8x - 4 = 0$	4) $3x^2 - 11x + 10 = 0$
$5)6x^2 - 13x - 5 = 0$	$6)4x^2 + 5x - 6 = 0$

FACTORING: DOTS_ difference of two squares

Example: $64a^2b^2 - 49c^2d^2 =$	Only use when **There is a minus between two <u>perfect</u> <u>squares</u> .
(8ab – 7cd)(8ab + 7cd)	
1) $36m^2 - 25n^2 =$	2) $81 - z^2 =$
3) $x^2 - 9 =$	4) $s^2 - 1 =$
5) $121p^2 - 9q^2 =$	6) 169a ² - 25b ² =
7) (3a - 4b) ² - 16 <u></u>	8) $25b^2 - 64c^2 =$

SOLVING: Quadratic Expression

Example:	Caution:
$x^{2} - 64 = 0$ (x + 8)(x - 8) = 0 x + 8 = 0 x - 8 = 0 x = -8 x = 8	Be sure the equation is set equal to zero!
1) $9a^2 - 16 = 0$	2) $81a^2 - 36 = 0$
3) $a^2 - 20 = 5$	4) $16 - x^2 = 0$
5) $(x-1)^2 - 4 = 0$	6) $(p - q)^2 - 49 = 0$

FACTORING: GCF _Greatest Common Factor

Example: $4 = 2 \times 2$ $4 = 2 \times 2$ $6 = 2 \times 3$	Use whenever possible Find the largest value that can be factored from each of the elements of the expression.
1) GCF of 36 and 48=	2) GCF of 14 and 18 =
3) GCF of 16 and 24 =	4) $4x^2 - 9y^2 =$
5) $16m^2 - 25n^2 =$	6) $p^{3}q - pq^{3} =$
7) $169a^2 - 144b^2 =$	8) $8x^2 - 18y^2 =$

SOLVING: Quadratic Expression

Example:	Caution:
$3x^2 + 6x = 0$	Be sure the equation is set equal to zero!
3x(x+2)=0	Practice: $2x^2 - 10x$
3x = 0 x + 2 = 0	
$x = 0 \qquad x = -2$	
1) $5x - 20x^2 =$	2) $13x^3 - 26x =$
3) $15x^2 + 36x + 12 = 0$	4) $8x^2 + 44x + 20 = 0$

Student Name:	Score:
Find the G.C.F of Monomials	
G.C.F of 3xy, 6xz and 9xyz is	Work Space
$G.C.F of x^3y^2$, xy and x is	
$G.C.F of mn^3, m^4n and mn is$	
$G.C.F of a^{3}b^{7}c^{4}, (abc)^{5} and a^{2}b^{3}c^{2} is$	
$G.C.F of 2r^5, 4r^9 and 6r^4 is$	
G.C.F of x^3yz^2 , $x^2y^3z^4$ and $2x^3yz^3$ is	
G.C.F of 5m ⁸ , 10m ⁶ and 7m ³ is	
G.C.F of 6a, 4b and 2c is	
G.C.F of pq^4 , q^3r and pq^2r is	
$G.C.F of (ab)^4, (abc)^3 and (abcd)^6 is$	

Page **10** of **14**

FACTORING: by grouping common factors

Example:	Only use when		
x(6w - 4v + u) - (6w - 4v + u) =	**There are four or more terms**		
(x - 1) (6w - 4v + u)	Break up the polynomial into sets of 2		
	Factor each pair. Factor out the common (shared) binomial parenthesis.		
1) $m(n-2) - 2(n-2) =$	2) $3(x+5) - y(x+5) =$		
3) <i>x</i> y + 7 <i>x</i> + 4y + 28 =	4) $xy + y + xz + z =$		
x() + 4() =			
5) $3xy - y^2 + 3x - y =$	6) $a^3 + a^2 + a + 1 =$		
7) $x^2 - 2x - 3x + 6 =$	8) $x^3 - 8x^2 - x + 8 =$		

More Factoring by grouping common factors

Example: Factor xy - 4y + -3x + 12 =	Caution:
(xy-4y) + (-3x+12) = y(x-4) + 3(-x+4)	Whenever there is a $(x - 5)$ and $(5 - x)$
= y(x-4) - 3(x-4)	You can NOT take out a common (x – 5)
= (x - 4)(y - 3)	Switch $(5 - x)$ to $(x - 5)$ by "•-1" see ex.
1) $3x(x - y) + y(y - x) =$	2) 6(m – n) – 3k(n – m) =
3)5a(a + 7) – (7 + a) =	4) $6a^3 - 15a^2 - 10 + 4a =$

Last unit rubric:

Notes in notebook: 3 stamps = 15 points	
Graphing the quadratic equations:	5 pts
Solve by taking SquareRoot & Squaring bs:	5pts
Solving: by using Quadratic Formula	5pts
Solving: by Completing the Square	5pts
Factoring & Solving Trinomials (split the middle):	5pts
Factoring & Solving DOTS:	5pts
Factoring & Solving GCF:	10pts
Factoring: by grouping common factors	5pts

+ 40 points to make a tab book

Eight-Tab Book Rubric

	4	3	2	1
	40 points	30 points	35 points	10-25
	Excellent	Good	Fair	Poor
Required Elements	The book	6 tabs are	4 tabs are	2 tabs
1. Tab: Graphing QE	includes all 8	included	included	are
2. Tab: Solve by taking √ and square both sides	required tabs			included
3. Tab: Solve by Quadratic Formula				
4. Tab: Solve by Completing the Square				
5. Tab: Factor & Solve Trinomials				
6. Tab: Factor & Solve DOTS				
7. Tab: Factor & Solve GCF				
8. Tab: Factor by Grouping				
Optional: other page such as Summary/notes/reflections				
Timeliness	Turned in on	Turned in 2	Turned in	Turned in a
	time	days late	the next	week or more late
	01/15/13		week	

On each tab you can have the following:

- Vocab/concept/formla/procedures, and
- 2 examples and/or graphics

Possible: 40points

or

• Write a story or make cartoon drawings of the process to solve the Quadratic Equation [open for creativity]

+ 10ec for creativity/completeness

Possible: 50points

Please keep tab on Ms. Nong teacher's website:

Video Math Tutorials (by Ms. Nong)

&

Math Practice and Tutoring (other videos/recommended websites)

I will continue to post... the end.